
PERMISSION-BASED

ANOMALOUS APPLICATION DETECTION

ON ANDROID SMART PHONE

HTET HTET WIN

M.C.Sc. JANUARY 2019

PERMISSION-BASED

ANOMOLOUS APPLICATION DETECTION

ON ANDROID SMART PHONE

By

HTET HTET WIN

B.C.Sc.

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Computer Science

(M.C.Sc.)

University of Computer Studies, Yangon

JANUARY 2019

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincere thanks to those who

helped me with various aspects of conducting research and writing this thesis.

First and foremost, I would like to express my gratitude and my sincere

thanks to Professor Dr. Mie Mie Thet Thwin, the Rector of the University of

Computer Studies, Yangon, for allowing me to develop this thesis.

My sincere gratitude goes to Dr. Zon Nyein Nway, my supervisor, Lecturer

of Information Science Department, the University of Computer Studies, Yangon, for

giving a great deal of her time, always finding enough to advise every step of the

thesis process, to read and correct the thesis presentations as well as system

implementation, and make constant assessment on my work done. Honestly, because

of her continuous pilot, I admit that my thinking and writing perspective of the thesis

are so much stronger than in my initial stage.

I would like to express my special appreciation to Dr. Thi Thi Soe Nyunt,

Professor, and Head of Faculty of Computer Science, for her administrative supports

and encouragements in development of the thesis.

I also wish to express my gratitude to Daw Khin Mar Kyu, Lecturer,

Department of English, the University of Computer Studies, Yangon, for editing this

thesis from the language point of view.

Moreover, I would like to extend my thanks to all my teachers for their

support not only for the fulfillment of the degree of M.C.Sc. but also for my life.

I also thank my friends and colleagues for supporting in various ways to

complete this thesis.

Last but not least, my family and my special friend: Phyoe Paing Paing Minn

deserve special thanks for their love, care and immense support throughout my whole

life as well as during my thesis.

i

STATEMENT OF ORIGINALITY

I hereby certify that the work embodies in this thesis is the result of original

research and has not been submitted for a higher degree to any other University or

Institution.

--------------------------------- -----------------------------
 Date Htet Htet Win

ii

ABSTRACT

Information applications are widely used by millions of users to perform many

different activities. Android-based smart phone users can get free applications from

Android Application Market. But, these applications were not certified by legitimate

organizations and they may contain malware applications that can steal private

information from users.

The proposed system develops a permission-based malware detection to

protect the privacy of android smart phone users. This system monitors various

permissions obtained from android applications and analyses them by using a

statistical technique called Singular Value Decomposition (SVD) to estimate the

correlations of permissions. The dataset including approximately 4000 malware JSON

files are downloaded from https://www.kaggle.com/goorax/static-analysis-of-android-

malware-of-2017. The training phase emphasizes on the malware samples

(approximately 300) which includes the most significant patterns of the current

malware environment according to the analysis results. The testing phase is conducted

on 120 malware and goodware apps.

 The proposed system evaluates the risk level (High, Medium, and Low) of

Android applications based on the correlation patterns of permissions. The overall

accuracy of the system is 85% for malware applications and goodware applications as

the test results.

iii

https://www.kaggle.com/goorax/static-analysis-of-android-malware-of-2017
https://www.kaggle.com/goorax/static-analysis-of-android-malware-of-2017

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS i

ABSTRACT iii

TABLE OF CONTENTS iv

LIST OF FIGURES vi

LIST OF TABLES vii

LIST OF EQUATIONS viii

CHATPER 1 INTRODUCTION 1

1.1 Overview of the Proposed System 1

1.2 Problem Definition 3

1.3 Objectives of the Thesis 3

1.4 Organization of the Thesis 3

CHAPTER 2 ANDROID OPERATING SYSTEM AND ANDROID

MALWARE 5

 2.1 Introduction to Android Operating System 5

 2.1.1 Android Architecture 6

 2.1.2 Structure of Android Application 7

 2.1.3 Android Permission 10

 2.2 Android Malware 11

2.2.1 Types of Android Malware 11

 2.2.2 Ways of Malware Infection 14

 2.2.3 Android Malware Preventions 15

 2.2.4 Android Malware Detection 16

 2.2.5 Android Malware Analysis 17

 2.2.6 Symptoms of Malware Compromised

Devices 20

CHAPTER 3 THE PROPOSED SYSTEM

 METHODOLOGY 23

 3.1 Malware Detection System 23

3.2 Statistical Technique: Singular Value

Decomposition (SVD) 24

iv

3.2.1 Vector Terminalogy 25

3.2.2 Matrix Terminalogy 27

 3.3 Similarity Measure 31

 3.4 Measuring System Effectiveness 32

CHAPTER 4 THE PROPOSED SYSTEM IMPLEMENTION 33

 4.1 Brief Overview of the Proposed System 33

 4.2 Training Phase of the Proposed System 34

 4.2.1 Data Collection 34

 4.2.2 Dataset Description 35

 4.2.3 Preprocessing 35

 4.2.4 Implementation Steps for the

Training Phase 36

 4.3 Testing Phase of the Proposed System 37

 4.4 Database Design of the Proposed System 38

 4.5 Analysis and Empirical Result 39

 4.6 Screen Transactions of the Proposed System 42

CHAPTER 5 CONCLUSION 47

 5.1 Advantages of the System 47

 5.2 Limitations of the System 48

 5.3 Further Extension 48

AUTHOR’S PUBLICATION 49

REFERENCES 50

APPENDIX 52

v

LIST OF FIGURES

Figures Page

Figure 2.1 Example of Android Manifest 10

Figure 2.2 Spyware 12

Figure 2.3 Adware 12

Figure 2.4 Trojans 13

Figure 2.5 Viruses 13

Figure 4.1 Process Flow Diagram for Training Phase 36

Figure 4.2(a) Process Flow Diagram for creating queryApp Vector 37

Figure 4.2(b) Process Flow Diagram for Finding Risk Level 38

Figure 4.3 Database Design of the Proposed System 39

Figure 4.4 Accuracy Comparison of Different Trained Dataset 40

Figure 4.5 Accuracy Comparison of Different k Value for

Malware Detection 41

Figure 4.6 Accuracy Comparison of Different k Value for

Malware and Goodware Detection 41

Figure 4.7 Screen Design for Retrieving Original permission-app

Matrix 42

Figure 4.8 Screen Design for Retrieving Singular Value Matrix 43

Figure 4.9 Screen Design for Retrieving Eigen Value Matrix 44

Figure 4.10 Screen Design for Retrieving U Matrix 44

Figure 4.11 Screen Design for Choosing Application to Detect 45

Figure 4.12 Screen Design for Showing Permission of Chosen App 45

Figure 4.13 Screen Design for Showing the Similarity Result When

Pressing the Result Risk Level Button 46

vi

LIST OF TABLES

 Page

Table 4.1 Accuracy for the Proposed System 42

vii

LIST OF EQUATIONS
 Page

Equation 3.1 25

Equation 3.2 26

Equation 3.3 26

Equation 3.4 29

Equation 3.5 31

Equation 3.6 32

viii

CHAPTER 1

INTRODUCTION

Android is the powerful operating system supporting a large number of

applications in smart phones. These applications make life more comfortable. With

the repaid growing of Android application every day, there are growing threats for the

mobile users by installing more malwares without ability to detect them before

installing the applications to the user device. Malware name came from “Malicious

Software”, its software was designed to secretly access a system without the owner’s

device knowledge. A key challenge is to identify a suspected application as

anomalous (malware). Therefore, the system that can detect whether the particular

app is malicious or not is proposed and the installation can be canceled if the

permissions are unacceptable [5].

According to the future of mobile, there were 4.1 billions of Internet users at

2018. And there will be 5.4 billions at 2025. As the Internet users are increasing

around the world. On the other hand, there also increases the people who connect the

Internet via mobile. So, there will be 80% of Internet users who make Internet

connections via mobile at 2025. Moreover, 50% of transactions will be made by

phone at 2050.

There are a lot of attacks such as device attack, network attack or datacenter

attack, etc. Moreover, there are many different ways to attack. For example, in device

attack, attackers can attack our mobile phone through browser, phone, sms or

applications, etc. Among them, the system is intended to detect applications which

use unintended permissions (Misconfigured apps can open doors to attackers by

providing unintended permissions).

1.1 Overview of the Proposed System
To implement the proposed system, the first thing is to collect the information

about the risky apps as much as we can and then need to analyze the nature of risky

apps. According to the literature, there are so many ways to analyze different kinds of

apps such as by analyzing signature features, behavior features or anomaly features

and so on. Among them, we choose to analyze the apps based on permissions.

 1

Because permission is the main gate to allow the application (which operations must

be done). So, the permissions of android application are need to learn.

There are a lot of permissions that are declared by Google. Moreover, there

are also customized permissions. The specific permission has its own task such as

reading contacts, or sending sms or getting GPS, etc. Some of them are dangerous.

Some of them are normal. Some of them are nothing meaning etc. But when

analyzing permissions, it isn't enough to know which permissions are dangerous and

which permissions are normal. One application can use as much as permissions

according to the developer. And, we cannot conclude that an application has high risk

by seeing one of dangerous permissions.

So, the correlation patterns of permissions are usually involved in high risk

application. To get the correlation patterns of permissions, Singular Value

Decomposition (SVD) technique is chosen. To apply SVD technique, the original

matrix (permission-app matrix) is needed. For choosing the training dataset, malware

dataset is needed to train since the system gives the knowledge that how much risk

level has an incoming application. That kind of dataset didn’t download easily as

malware based dataset are very restricted.

The required dataset is obtained from https://www.kaggle.com/goorax/static-

analysis-of-android-malware-of-2017. Kaggle website describes the specific analysis

results of malware applications by separating into four folders. These folders are

apkMetaReport, byteCodeReport, virusTotalReport, and assestReport. apkMetaReport

folder contains the contents of Manifest.xml files. byteCodeReport folder contains the

contents of classes.dex. virusTotalReport folder contains the reports of virusTotal

service. assestReport folders contains names of assests and lib contents. So, we

choose to download apkMetaReport. That dataset contains over 4000 json files (one

Json file for one malware application). An android app name is changed via its sha256

hash value to be used as its file name.

 2

https://www.kaggle.com/goorax/static-analysis-of-android-malware-of-2017
https://www.kaggle.com/goorax/static-analysis-of-android-malware-of-2017

1.2 Problem Definition
Mobile devices are replacing desktops and laptops, as they enable the users to

access email, Internet, GPS navigation, and the storage of critical data such as contact

lists, passwords, calendars, and login credentials. Also, recent developments in mobile

commerce have enabled users to perform transactions such as purchasing goods and

applications over wireless networks, and even banking from their smart phones [2].

Believing that surfing the internet on mobile devices is safe, many users fail to enable

existing security software. And applications use a lot of permissions to access the SD

card, use the Internet and so on. The number of users is ignoring that permissions as

they don’t understand the permission information, but this harms to our mobile

devices. This causes unwanted things like break the security of our mobile phone or

else this can effect on our sensitive information. Therefore, if the specific-app

permissions risks are known, the installation of that app can be eliminated [10].

1.3 Objectives of the Thesis
 The objectives of the thesis are as follows:

• To develop a malware application detection system for android smart

phone.

• To support the user about the risk level information of application before

installing it.

• To know the statistical correlations of permissions using Singular Value

Decomposition (SVD).

1.4 Organization of the Thesis
 This thesis is organized into five chapters.

Chapter 1 includes introduction, overview of the proposed system, problem

definition and objectives of the thesis.

Chapter 2 describes the detail information about android mobile operating

system and android malware including types of android malware and kinds of

malware detection and analysis methods.

Chapter 3 explains the proposed system methodology.

 3

Chapter 4 presents design and implementation of proposed system which

includes system flow diagram, database design, data dictionary, screen designs of the

proposed system, empirical results.

The last chapter, Chapter 5 includes the conclusion of the system, advantages

and limitations of the system and future extension.

 4

CHAPTER 2

ANDROID OPERATING SYSTEM AND ANDROID

MALWARE

 Nowadays, android is the most popular mobile operating system, based on

the Linux kernel, primarily designed for touchscreen mobile devices. Google became

involved with the financial backing of Android Inc. in 2005, with smartphones using

the operating system, which debuted in 2008 (HTC Dream). The operating system

is open source, distributed under the Apache License, leading to rapid development

by many globally. According to AppBrain, over 1.1 million Android apps exist in

the market as of February 13, 2014, with 22 percent identified as low-quality apps.

The architecture of the Android operating system is well published, involving

the Linux kernel, libraries, an application framework, applications, and the Dalvik

Virtual Machine (DVM) environment. To gain “root” on a device one must gain

access to the core Linux kernel running an Android device. Most Android malware

do not attempt to perform exploits to get to root, as that is not required for nefarious

motives. Rather, apps are commonly modified to add in a hidden Trojan component

so that the Trojan is also installed when a user installs an app. Once installed and run,

Android malware may employ a wide variety of permissions enabled for the app to

then send text messages, and phone and geolocation information to manage and

intercept all types of communications and more [8].

2.1 Introduction to Android Operating System
Android operating system versions are named after consumables starting with

version 1.5. The version where each platform name was first provided is in

parenthesis: Cupcake (1.5), Donut (1.6), Eclair (2.0), Froyo (2.2), Gingerbread (2.3),

Honeycomb (3.0), Ice Cream Sandwich (4.0), Jelly Bean (4.1), and KitKat (4.4), with

Key Lime Pie (5.0) expected in the future. There is a pattern in the naming of each

version, can you spot it? Each version introduces new functionality and

requirements. For example, KitKat, the most recent release, is designed to streamline

memory usage for maximum compatibility with all devices in party by introducing

new application programming interface (API) solutions, such as

5

“ActivityManager.isLowRamDevice()”, tools like meminfo for developers. Back to the teaser

above each version of Android is named after a sequential letter in the English

alphabet, with versions Cupcake through KitKat representing versions C, D, E, F,

G, H, I, J, and K. The next major version following Key Lime Pie should start with

the letter L and be a dessert item such as Ladyfingers, Lemon Meringue Pie, or

Licorice [11].

2.1.1 Android Architecture
Android is a software stack meaning that it features four main software layers

(from top to bottom): the application layer, the framework layer, the runtime and

native libraries layer and the kernel layer.

The top layer features Android applications. Typical Android applications are:

the Home application which is the first running application that displays icons to start

other applications; the Contact application to manage the list of contact; the Phone

application to give phone calls; and the Browser application to visit web resources.

Users of devices running Android can install more applications on their device,

usually by downloading them from a repository such as F-Droid1 or the official

Google market named Play Store2. Applications are mainly written in the Java

programming language but can also contain native code. Applications rely on the

framework layer to communicate with the system [16].

The framework layer is an interface written in Java between applications and

the rest of the system. It provides facilities to retrieve information from a system

resource (e.g. the application can retrieve GPS coordinates through the Location

Manager) or to ask the system to call them back when there is a new event (e.g. ask

the TelephonyManager to notify the application when there is a phone call).

The third layer features two distinct entities: the Android runtime and the

native libraries.

• The Android runtime consists of the Dalvik virtual machine, which executes

Android applications’ Dalvik bytecode3, and Android core libraries, basically

Java classes, which applications can leverage (e.g. application can use the

Https URL Connection class to open a secure connection to a website). Some

libraries contain wrappers around native libraries. For instance, Java classes

for the core library handling secure connections to websites such as Https

6

URL Connection may use the Open SSL native library depending on the

environment’s configuration.

• The native libraries4 provide basic building blocks that can be used by

applications, the framework layer or core libraries. Applications can have

native code that directly uses the native OpenGL library for fast graphic

processing. The framework layer can use the native SQLite library to store

data.

The lowest layer is the Linux kernel. From upper software layers it can be

seen as an interface to the hardware (CPU, memory,). Indeed, it is responsible for

running programs on the CPU5 and it has a number of drivers to handle different

hardware such as the display, the audio, and drivers to manager network

communication. It also features a special driver for efficient Inter-Process

Communication called the Binder driver.

An Android application can use elements from the framework layer, core and

native libraries as well as directly communicate with the kernel. The Android system

implements security features to prevent applications from having access to every part

of the system. In short, developers give a list of permissions to every application they

write. This list specifies what the application is allowed to do on the system and has to

be validated by the user at installation time. When an application is installed, it is

given a User ID (UID). Every Android application can be seen as a Linux user.

Moreover, the Android system has a list of mapping for each permission to a Group

ID (GID). For every permission the application declared, the system adds the

application (or more precisely the corresponding Linux user) to the corresponding

GID. So, if an application does not have the GPS permission and wants to retrieve the

GPS coordinates through the LocationManager or the Linux driver for the GPS, the

Android system detects that the application is not in the GPS group and prevents it

from accessing GPS data [11].

2.1.2 Structure of Android Application
An Android application is a compressed zip file signed with the private key K

of the developer. It contains the Dalvikbytecode of the application (compiled from the

Java source code), data the application needs (pictures, sound,) and a manifest file

7

describing the application’s structure and permissions the application requires. In

short,

Application = Sign(Zip(DalvikBytecode;Manifest;Data);K):

The fact that Android applications are signed with the private key of the

developer ensures that applications can only be updated by code signed by the same

developer and that applications signed with the same key have the possibility to share

permissions and UID. However, it does not guarantee the authenticity of the author of

the application since certificates can be self-signed (e.g., anyone could claim to be

John Doe).

Components. Android applications are made of components. There exist four kinds

of components: activity, service, content provider and broadcast receiver. Activity

components are used for the GraphicalUser Interface (GUI). They display graphical

elements such as buttons, lists or pictures. Service components are used for

computational intensive tasks or tasks that take a long time such as playing an audio

file. Content providers are used to share data between applications. For instance, the

list of contact is implemented as a content provider so that any application can have

access to it (if it has the proper permission). Finally, broadcast receiver components

receive messages from the system or other applications (e.g. an SMS has been

received by the system). Concretely, every component is a Java class which inherits

from a specific super class such as Activity, Service, etc.

Communication with Intent and URI. Components of an Android application

usually communicate using special system methods called Inter-Component

Communication (ICC) methods. There are about forty ICC methods which a

component can use to communicate with another component. The most used ICC

method is startActivity(Intent). This method is used to tell the system to start a new

activity component described by the method’s parameter.

Intent. Components can communicate with one another using an abstract object

called Intent. Communications can take place between components of a single

application or between components of multiple applications. When component A

wants to communicate with component B, it initializes an Intent and sets component

B as the destination. This kind of communication is said to be explicit because the

target component is explicitly specified. A communication can also be implicit in

which case the source component initializes the Intent with the action it would like to

perform (e.g. view a pdf document). When the component sends the Intent, the system

8

checks for components having the action in their intent filter. The selection of the

target component can be done automatically by the system or may require user

intervention if multiple components can handle the action. For instance, if Activity3

sends an Intent with action "view txt" the system starts Activity2 since it is the only

component having the "view txt" intent filter. Intents can encapsulate data in form of

key/value pairs in objects called Bundles. Intents are used for communications

between activities, service and broadcast receivers.

URI. A URI, or Uniform Resource Identifier, identifies an abstract or physical

resource. In short a URI is used to communicate with content providers. They may

also be used to initialize Intents to target specific resource. As an example link,

URI:content://com.android.calendar/events, it can be cut into three parts. The first

one, content, identifies how to access the resource. The reader may already know the

http scheme for accessing web pages through the HTTP protocol. Content means that

access to the resource is done through a content provider. The second part,

com.android.calendar, called the authority identifies the holder of the resource. The

reader may be familiar with authorities such as mywebsite.com which identify a

registered host on the Internet. In our example, the authority identifies the content

provider called com.android.calendar which has been registered to the Android

system. Finally, events, called the path, is the part identifying the target resource. The

reader may be familiar with paths such as index.html identifying web page resources.

In example, this is the database table events of the content provider.

<manifest package="com.android.providers.calendar">

<application android:process="com.android.calendar">

<provider android:name="CalendarProvider" />

<service android:name="CalendarSyncAdapterService" >

<intent-filter>

<action android:name="SyncAdapter" />

</intent-filter>

</service>

<activity android:name="CalendarContentProvider" >

<intent-filter>

<action android:name="MAIN" />

<category android:name="UNIT_TEST" />

</intent-filter>

9

</activity>

<receiver android:name="CalendarReceiver">

<intent-filter>

<action android:name="BOOT_COMPLETED" />

</intent-filter>

</receiver>

</application>

<uses-permission android:name="android.permission.INTERNET" />

</manifest>

Figure 2.1 Example of Android Manifest

The Manifest File. The manifest describes the application’s structure in terms of

components. A component can be exported so that other applications can use it. It can

also declare intent filters to specify to the system what kind of action or data it

handles. The manifest also lists all the permissions that the application requests (e.g.

INTERNET, GPS). An example of manifest is presented in Figure 2.1. It declares an

application with one content provider, one service, one activity and one broadcast

receiver. The service only accepts intent with action SyncAdapter, the activity intents

with action MAIN and category UNIT_TEST and the broadcast receiver intents with

action BOOT_COMPLETED [2].

2.1.3 Android Permission
Application vendors define a set of permissions for each application. For

installing an application, the user has to approve as a whole all the permissions the

application’s developer has declared in the application manifest. If all permissions are

approved, the application is installed and receives group memberships. The group

memberships are used to check the permissions at runtime. For instance, an

application Foo is given two group memberships net_bt and inet when installed with

permissions BLUETOOTH and INTERNET, respectively. In other terms, the

standard Unix ACL is used as an implementation means for checking permissions.

Android 2.2 defines 134 permissions in the android.Manifest$permission

system inner class, whereas Android 4.0.1 defines 166 permissions. This gives us an

upper-bound on the number of permissions which can be checked in the Android

framework.

10

Android has two kinds of permissions: high level and low level permissions.

High-level permissions are only checked at the framework level (that is, in the Java

code of the Android SDK). Android 2.2 declares eight low-level permissions which

are either checked in C/C++ native services (RECORD AUDIO for instance) or in the

kernel (e.g., when creating a socket).

In this chapter, we focus on the high-level permissions that are only checked

in the Android Java framework [4].

2.2 Android Malware
One of the biggest problems that Internet surfers face today on the World

Wide Web is malware. Malware is short hand for malicious software. It is software

developed by cyber attackers with the intention of gaining access or causing damage

to an electronic device’s normal operation. Malware can infect personal computers,

smartphones, tablets, servers and even equipment – basically any device with

computing capabilities. As technology, computing and software have advanced during

the last two decades, so has the sophistication and prevalence of malicious software.

Malware is installed on your electronic device usually without your knowledge and it

can enter your electronic device as a result of surfing the Internet and in a variety of

different ways. Once it sneaks into your device, malware is capable of spying on your

surfing habits, logging your passwords by observing your keystrokes, stealing your

identity, reading your email, and variety of other invasive tactics [12].

2.2.1 Types of Android Malware

Mobile malware is malicious software that is specifically built to attack

mobile phone or smartphone systems. These types of malware either install

themselves or are installed on the device by unwitting mobile users, and then perform

functions without user knowledge or permission. Malicious mobile apps are often

disguised as legitimate applications. They can be distributed through the internet via

mobile browsers, downloaded from app stores or even installed via device messaging

functions. The insidious objectives of mobile malware range from spying to

keylogging, from text messaging to phishing, from unwanted marketing to outright

fraud. There is malware out there targeting every mobile platform – from Apple iOS

to WinMobile to Blackberry – yet the vast majority of mobile malware programs

11

today target Google Android users. Some researchers report a rate of infection as high

as 90 percent, due to Google’s open app development and distribution model.

(a) Spyware

Figure 2.2 Spyware

Spyware on your Android will monitor record and send all your information to

the attackers. It will steal all the information you enter on your Android device.

Spyware will come attached with some application and it will go unnoticed until some

security software is installed on your device. Most of the applications that you directly

download from the Internet contain spyware.

(b) Adware

Figure 2.3 Adware

This is the most common and all time popular android malware that a

smartphone phone gets infected with. Having adware on the device can be a very

frustrating thing, as you will receive continuous popups and ads on your screen. Also,

if any of the ads is clicked then another malicious program will be downloaded or

some unwanted application will be installed on your device.

12

(c) Trojans

Figure 2.4 Trojans

Mobile Trojans infect user devices by attaching themselves to seemingly

harmless or legitimate programs, are installed with the app and then carry out

malicious actions. Such programs have been known to hijack the browser, cause the

device to automatically send unauthorized premium rate texts, or capture user login

information from other apps such as mobile banking.

(d) Viruses

Figure 2.5 Viruses

Mobile viruses can be installed on the device any number of ways and cause

effects that range from simply annoying to highly-destructive and irreparable.

Malicious parties can potentially use mobile viruses to root the device and gain access

to files and flash memory.

(e) Phishing Apps
Mobile browsing of the internet is growing with smartphone and tablet

penetration. Just as with desktop computing, fraudsters are creating mobile phishing

sites that may look like a legitimate service but may steal user credentials or worse.

The smaller screen of mobile devices is making malicious phishing techniques easier

13

to hide from users less sophisticated on mobile devices than PCs. Some phishing

schemes use rogue mobile apps, programs which can be considered “trojanized”,

disguising their true intent as a system update, marketing offer or game. Others infect

legitimate apps with malicious code that’s only discovered by the user after installing.

(f) Malware that can make Calls and Send SMS
Another type of malware that users encounter is the malware which will make

fake calls and send SMS to the contacts. The messages that are being sent contains

malicious links, and which the receiver taps on the links they will also get infected by

the malware.

2.2.2 Ways of Malware Infection

Cybercriminals looking to have a greater return focus their efforts on

organizations and use a variety of tactics to infect the maximum number of corporate

device with their malware variants.

• Infected application: The most common way for a smartphone to get infected

is by downloading an app that has a virus or malware embedded inside the app

code. Malware operators will usually choose popular apps to repackage or

infect, increasing the likelihood that victims will download their rogue

version. Sometimes, however, they will come up with brand new applications.

Infected applications are usually found on third-party app stores. When the

app is installed, the virus or malware infects the smartphone operating system.

• Malvertising: Malvertising is the practice of inserting malware into legitimate

online ad networks to target a broad spectrum of end users. The ads appear to

be perfectly normal and appear on a wide range of apps and web pages. Once

the user clicks on the ad, his or her device is immediately infected with the

malware. Some more aggressive malvertisements for example, take up the

entire screen of the device while the user is browsing the web. Faced with this

situation, many users’ first response will be to touch the screen, triggering the

malicious download.

• Scams: Scams are common tools used by hackers to infect mobile devices

with malware. They rely on a user being redirected to a malicious web page,

14

either through a web redirect or pop-up screen. In more targeted cases, a link

to the infected page is sent directly to an individual in an email or text

message. Once the user is taken to the infected site, the code within the page

automatically triggers the malicious software download. The website is

usually disguised to look legitimate in order to get users to accept the file onto

their devices.

• E-mail attachments: It may also be possible for an e-mail to infect a

smartphone if the user attempts to open an attachment on their smartphone and

that attachment has a virus or malware. For example, an infected PDF

attachment can infect a smartphone.

• SMS or bad website: Another common tactic to infect smartphones is done

through an SMS. For example, an unknown contact could send you a link to

visit that sends you an infected attachment, attempts remote control, or

attempts to phish private information from you.

• Direct to Device: Possibly the most James Bond-esque infection method,

direct to device, dictates that the hacker must actually touch the phone in order

to install the malware. Usually, this involves plugging the device into a

computer and directly downloading the malicious software onto it (also known

as side loading) [14].

2.2.3 Android Malware Preventions

The best way to protect android smartphones is to only download apps from a

verified, reputable source. Google Play is the best place to download apps. Apps in

online stores are checked for viruses and malware and much less likely to cause

problems for android smartphones.

You can also download and install antivirus and anti-malware apps for your

android smartphone. For example, AVG AntiVirus is available for Android phones,

and Kaspersky Safe Browser are examples of apps that help protect android

smartphones from malware.

Android malware is increasingly common, and that means mobile device-users

need to be on guard when it comes to what types of apps they choose to download.

Through malicious malware — in the form of apps — hackers can easily take hold of

15

https://www.computerhope.com/jargon/a/attachme.htm
https://www.computerhope.com/jargon/s/sms.htm
https://www.computerhope.com/jargon/p/phishing.htm
https://www.computerhope.com/jargon/a/antiviru.htm
https://www.computerhope.com/jargon/m/malware.htm

your personal data. Users who don't take security seriously will be at a greater risk for

downloading these dangerous apps. To prevent android malwares from invading the

mobile devices, some important guidelines are described.

• Guard your privacy by taking time to read the permissions the app requires.

Think about whether they match the purpose of the app; granting the wrong

permissions can send your sensitive data off to third parties.

• Read the app's reviews. Check to see if there are any strange concerns or

experiences with the app.

• Avoid downloading apps from third-party marketplaces. That's exactly where

hackers plant their malware-ridden apps.

• Stay away from dodgy websites and always check if the developers are

legitimate. If you've never heard of them, see if there have been any concerns

about them published online.

• Be wary of a free antivirus trial, because it could be malware in disguise that

attacks your mobile device. Affordable Android security software is available

from trusted vendors, and it effectively does the job of blocking malicious

apps [14].

2.2.4 Android Malware Detection
The popularity of Android mobile devices has gone up in our lives and are

being used for handling a lot of our personal and confidential information. Hence they

are now an ideal target for attackers. Android based smart-phone users can download

a lot of free applications from Android Application Market/Play Store. At the same

time, the increasing number of security threats that target mobile devices has

emerged. In fact, malicious users and hackers are taking advantage of both the limited

capabilities of mobile devices and the lack of standard security mechanisms to design

mobile-specific malware that access sensitive data, steal the user’s phone credit, or

deny access to some device functionalities. To mitigate these security threats, various

mobile specific Intrusion Detection Systems (IDSes) have been recently proposed.

Most of these IDSes are behavior-based, i.e. they don’t rely on a database of

malicious code patterns, as in the case of signature-based IDSes [15].

16

2.2.5 Android Malware Analysis
Malware analysis is the process of determining the purpose and functionality

of a given malware sample such as a virus, worm, or Trojan horse. This process

is a necessary step to be able to develop effective detection techniques for

malicious code. In addition, it is an important prerequisite for the development

of removal tools that can thoroughly delete malware from an infected machine.

Traditionally, malware analysis has been a manual process that is tedious and time-

intensive. Unfortunately, the number of samples that needs to be analyzed by

security vendors on a daily basis is constantly increasing. The process of

analyzing a given program during execution is called dynamic analysis; while static

analysis refers to all techniques that analyze a program by inspecting it.

(a) Static Malware Analysis

Analyzing software without executing, it is called static analysis. Static

analysis techniques can be applied on different representations of a program. If the

source code is available, static analysis tools can help finding memory corruption

flaws and prove the correctness of models for a given system. Static analysis tools can

also be used on the binary representation of a program. When compiling the source

code of a program into a binary executable, some information gets lost. This loss of

information further complicates the task of analyzing the code.

The process of inspecting a given binary without executing is mostly

conducted manually. For example, if the source code is available, several interesting

information, such as data structures, used functions and call graphs can be extracted.

This information gets lost once the source code has been compiled into a binary

executable and it will impede further analysis. Within the malware domain typically

the latter is the case, since the source code of a current malware binary is typically not

available [11].

Various techniques are used for static malware analysis. Some of those are

described below.

•File fingerprinting: Beside examining obvious external features of the

binary this includes operations on the file level such as computation of a

cryptographic hash (e.g., md5) of the binary in order to distinguish it from others and

to verify that it has not been modified.

17

•Extraction of hard coded strings: Software typically prints output (e.g.,

status-or error-messages), which ends up embedded in the compiled binary as

readable text. Examining these embedded strings often allows conclusions to be

drawn about internals of the inspected binary.

•File format: By leveraging metadata of a given file format additional, useful

information can be gathered. This includes the magic number on UNIX systems to

determine the file type as well as dissecting information of the file format itself. For

example from a Windows binary, which is typically in PE format (portable

executable) a lot of information can be extracted, such as compilation time, imported

and exported functions as well as strings, menus and icons.

•AV scanning: If the examined binary is well-known malware, it is highly

likely to be detected by one or more AV scanners. To use one or more AV scanner is

time consuming but it becomes necessity sometimes.

•Packer detection: Nowadays malware is mostly distributed in an obfuscated

form e.g., encrypted or compressed. This is achieved using a packer, whereas

arbitrary algorithms can be used for modification. After packing, the program looks

much different from a static analysis perspective and its logic as well as other

metadata is thus hard to recover. While there are certain unpackers such as PEiD2,

there is accordingly no generic unpacker. This makes a major challenge of static

malware analysis.

•Disassembly: The major part of static analysis is typically the disassembly of

a given binary. This is conducted utilizing tools, which are capable of reversing the

machine code to assembly language, such as IDA Pro. Based on the reconstructed

assembly code an analyst can then inspect the program logic and thus examine its

intention. Usually this process is supported by debugging tools such as OllyDbg. The

main advantage of static malware analysis is that it allows a comprehensive analysis

of a given binary. That is, it can cover all possible execution paths of a malware

sample. Additionally, static analysis is generally safer than dynamic analysis as the

source code is not actually executed. However, it can be extremely time-consuming,

cumbersome and thus requires expertise.

Limitation of Static Malware Analysis: Generally, the source code of malware

samples is not readily available. That reduces the applicable static analysis techniques

for malware analysis to those that retrieve the information from the binary

18

representation of the malware. Analyzing binaries brings along intricate challenges.

Consider, for example, that most malware attacks host executing instructions in the

IA32 instruction set. The disassembly of such programs might result in ambiguous

results if the binary employs self modifying code techniques. Additionally, malware

relying on values that cannot be statically determined (e.g., current system date,

indirect jump instructions) exacerbate the application of static analysis techniques.

The other is that malware authors know of the limitations of static analysis methods

and thus, will likely create malware instances that employ these techniques to thwart

static analysis. Therefore, it is necessary to develop analysis techniques that are

resilient to such modifications, and are able to reliably analyze malicious software [5].

(b) Dynamic Malware Analysis

Executing a given malware sample within a controlled environment and

monitoring its actions in order to analyze the malicious behavior is called dynamic

malware analysis. Since Dynamic Malware Analysis is performed during runtime and

malware unpacks itself, dynamic malware analysis evades the restrictions of static

analysis (i.e., unpacking and obfuscation issues). Thereby it is easy to see the actual

behavior of a program. Another major advantage is that it can be automated thus

enabling analysis at a large scale basis. However, the main drawback is so-called

dormant code: That is, unlike static analysis, dynamic analysis usually monitors only

one execution path and thus suffers from incomplete code coverage. In addition, there

is the danger of harming third party systems if the analysis environment is not

properly isolated or restricted respectively. Furthermore, malware samples may alter

their behavior or stop executing at all once they detect to be executed within a

controlled analysis environment [11].

Mainly two basic approaches for dynamic malware analysis can be

distinguished:

•Analyzing the difference between defined points: A given malware sample

is executed for a certain period of time and afterwards the modifications made to the

system are analyzed by comparison to the initial system state. In this approach,

Comparison report states behavior of malware.

•Observing runtime-behavior: In this approach, malicious activities

launched by the malicious application are monitored during runtime using a

specialized tool.

19

An example for the first approach is Truman (The Reusable Unknown

Malware Analysis Net). Thereby malware is executed on a real Windows

environment rather than within a Virtual Machine. During runtime Truman provides a

virtual Internet for the malware to interact with. After execution the host is restarted

and boots a Linux image, which then mounts the previously used Windows image in

order to extract the relevant data, such as the Windows registry and a complete file

list. Finally, the Windows environment is reset to its initial clean state. By using a

native environment Truman is able to circumvent possible anti-debugging measures

of malware. However, since the result is only a snapshot of the infected system,

information related to dynamic activities such as spawned processes and temporarily

created files are lost. Hence observing the runtime-behavior of an application is

currently the most promising approach. It is mostly conducted utilizing sandboxing. A

sandbox hereby refers to a controlled runtime environment which is partitioned from

the rest of the system in order to isolate the malicious process. This partitioning is

typically achieved using virtualization mechanisms on a certain level. While in

principle existing tools, such as chroot could be used to deploy such a controlled

environment several sandbox environments dedicated to malware analysis exist

implementing specialized techniques [12].

2.2.6 Symptoms of Malware Compromised Devices

Smartphone users are beginning to understand how important it is to protect their

devices so malware can’t be installed on them. However, many users are unaware

of what measures they can take to identify malicious activity on their devices.

Nonetheless, eventually the malicious activity will have to kick into action, and that’s

when you can pay attention to certain signs to detect illegitimate activity.

• Battery Life is Much Shorter: A hacked smartphone will have a much

shorter battery life. If your phone is suddenly dying after a few short hours, it

could be because spyware or another type of malware is running in the

background.

• Android is Performing Poorly: Your phone may be performing poorly due

to a lack of memory, but it could also be due to malware running in the

background of your phone. If your phone is suddenly lagging behind, freezing,

20

refusing to load certain apps or web pages, or overheating, there may be

malware on your phone.

• Data Usage Has Increased: If your phone bill shows a serious spike in data

usage and other unusual charges — such as calls and texts to international

numbers — then a hacker has gained access to your device. Although you may

not notice this until your phone bill arrives, you can also check the data usage

for each app on your phone. If one app — particularly an app you recently

downloaded — is using much more data than it should be, then the app is

likely malicious.

• Adware and Pop-Ups Have Appeared: This is a more obvious sign of a

hacked smartphone. If pop-ups and advertisements are now appearing on your

device, then your phone is surely infected.

• Android is Sending Unusual Messages: If friends, family, or acquaintances

say that they receive a strange text, email, or Facebook message from you,

then your phone and accounts have likely been hacked. If you’ve started to

receive a lot of strange phone messages recently, this could also be a sign that

a hacker has compromised your phone.

• Websites appear somewhat different than before: If someone has installed

malware that is "proxying" on your device--that is, sitting between your

browser and the internet and relaying the communications between them

(while reading all of the contents of the communications and, perhaps,

inserting various instructions of its own)--it might affect how some sites

display.

• Some apps stop working properly: If apps that used to work properly

suddenly stop working, that may also be a sign of proxying or other malware

interfering with the apps' functionality.

• Cell-phone bill shows unexpected charges: Criminals can exploit an infected

device to make expensive overseas phone calls on behalf of a remote party

proxying through your device, can send SMS messages to international

numbers, or ring up charges in other ways.

21

• Data breaches and/or leaks: Of course, if you have experienced some data

leak you should always check to determine the source of the problem--and the

process of checking obviously includes examining your smartphone.

• The Internet connects on its own: Viruses and other malware use your

phone’s data to spread its message. If you see that your phone is mysteriously

switching your Wi-Fi and data connections on without your intervention, it

could be due to malware. These programs can override your preferences and

connect to the internet on their own. If you see unusual internet activity, scan

your phone for viruses and clean using an anti-virus program [8].

22

https://www.technorms.com/8175/free-wifi-tethering
http://i.viglink.com/?key=0858be7988e9967765d841666619025a&insertId=9a338d0fe1cc07e8&type=CD&exp=-100%3ACILITE%3A5&libId=jltk2sxu0102ks6c000DA4572sncj&loc=https%3A%2F%2Fwww.technorms.com%2F63748%2Fandroid-virus-symptoms&v=1&iid=9a338d0fe1cc07e8&out=https%3A%2F%2Fwww.walmart.com%2Fsearch%2F%3Fquery%3Danti-virus&ref=https%3A%2F%2Fwww.google.com%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dweb%26cd%3D1%26cad%3Drja%26uact%3D8%26ved%3D2ahUKEwjD4a_u1avdAhUS448KHcJMC-cQFjAAegQIAxAB%26url%3Dhttps%253A%252F%252Fwww.technorms.com%252F63748%252Fandroid-virus-symptoms%26usg%3DAOvVaw3BH55i_hMINU7pFP1hIAJ0&title=Android%20Virus%20Symptoms%3A%208%20Signs%20That%20Indicate%20Your%20Device%20is%20Infected&txt=%3Cspan%3Eanti%3C%2Fspan%3E%3Cspan%3E-%3C%2Fspan%3E%3Cspan%3Evirus%3C%2Fspan%3E

CHAPTER 3

THE PROPOSED SYSTEM METHODOLOGY

This chapter provides a description of, the much required, theoretical

foundation for our work and the general framework that we developed to carry out our

experiments.

3.1 Malware Detection Systems
The popularity of Android mobile devices has gone up in our lives and is

being used for handling a lot of our personal and confidential information. Hence they

are now an ideal target for attackers. Android based smart-phone users can download

a lot of free applications from Android Application Market/Play Store. At the same

time, the increasing number of security threats that target mobile devices has

emerged. In fact, malicious users and hackers are taking advantage of both the limited

capabilities of mobile devices and the lack of standard security mechanisms to design

mobile-specific malware that access sensitive data, steal the user’s phone credit, or

deny access to some device functionalities. To mitigate these security threats, various

mobile specific Intrusion Detection Systems (IDSes) have been recently proposed.

Most of these IDSes are behavior-based, i.e. they don’t rely on a database of

malicious code patterns, as in the case of signature-based IDSes [13].

Malware Detection: Malware detection is a field of study that deals with the

analysis, detection and containment of malware. The greatest challenges in security

tasks that are still battling the exploration of mobile communication devices,

computer and network infrastructures, and web technology are Malware attacks,

Malware detection and Malware analysis [9].

There are three different types of malware detection techniques.

1. Attack or Invasion Detection: Tries to detect unauthorized access by

outsiders.

2. Signature-based Detection (Misuse Detection): Tries to detect misuse by

insiders.

3. Behavior-based Detection (Anomaly Detection): Detects the patterns in a

given dataset that do not conform to an established normal behavior.

23

3.2 Statistical Technique: Singular Value Decomposition (SVD)
Singular value decomposition (SVD) can be looked at from three mutually

compatible points of view. On the one hand, we can see it as a method for

transforming correlated variables into a set of uncorrelated ones that better expose the

various relationships among the original data items. At the same time, SVD is a

method for identifying and ordering the dimensions along which data points exhibit

the most variation. This ties in to the third way of viewing SVD, which is that once

we have identified where the most variation is, it is possible to find the best

approximation of the original data points using fewer dimensions. Hence, SVD can be

seen as a method for data reduction [6].

As an illustration of these ideas, consider the 2-dimensional data points. The

regression line running through them shows the best approximation of the original

data with a 1-dimensional object (a line). It is the best approximation in the sense that

it is the line that minimizes the distance between each original point and the line. If

we drew a perpendicular line from each point to the regression line, and took the

intersection of those lines as the approximation of the original data point, we would

have a reduced representation of the original data that captures as much of the original

variation as possible. Notice that there is a second regression line, perpendicular to the

first.

This line captures as much of the variation as possible along the second

dimension of the original data set. It does a poorer job of approximating the original

data because it corresponds to a dimension exhibiting less variation to begin with. It is

possible to use these regression lines to generate a set of uncorrelated data points that

will show sub groupings in the original data not necessarily visible at first glance.

These are the basic ideas behind SVD: taking a high dimensional, highly

variable set of data points and reducing it to a lower dimensional space that exposes

the substructure of the original data more clearly and orders it from most variation to

the least. What makes SVD practical for NLP applications is that you can simply

ignore variation below a particular threshold to massively reduce your data but be

assured that the main relationships of interest have been preserved [2].

24

Full Singular Value Decomposition: SVD is based on a theorem from linear algebra

which says that a rectangular matrix A can be broken down into the product of three

matrices - an orthogonal matrix U, a diagonal matrix S, and the transpose of an

orthogonal matrix V.

Reduced Singular Value Decomposition: Reduced singular value decomposition is

the mathematical technique underlying a type of document retrieval and word

similarity method variously called Latent Semantic Indexing or Latent Semantic

Analysis. The insight underlying the use of SVD for these tasks is that it takes the

original data, usually consisting of some variant of a word x document matrix, and

breaks it down into linearly independent components. These components are in some

sense an abstraction away from the noisy correlations found in the original data to sets

of values that best approximate the underlying structure of the dataset along each

dimension independently. Because the majority of those components is very small,

they can be ignored, resulting in an approximation of the data that contains

substantially fewer dimensions than the original. SVD has the added benefit that in

the process of dimensionality reduction, the representation of items that share

substructure become more similar to each other, and items that were dissimilar to

begin with may become more dissimilar as well. In practical terms, this means that

documents about a particular topic become more similar even if the exact same words

don't appear in all of them. As we have already seen, SVD starts with a matrix, so we

will take word x document matrix as the starting point [10].

3.2.1 Vector Terminology
The proposed methodology is based on statistical and matric method. So,

some of the vector terminology is mentioned as follows.

(a) Vector Length

The length of a vector is found by squaring each component, adding them all

together, and taking the square root of the sum. If 𝑣⃗𝑣 is a vector, its length is denoted

by |𝑣⃗𝑣|. More concisely,

|v�⃗ | = �∑ xi2n
i=1 (3.1)

For example, if 𝑣⃗𝑣 = [4, 11, 8, 10], then

|v�⃗ | = �42 + 112 + 82 + 102 = √301 = 17.35

25

(b) Vector Addition

 Adding two vectors means adding each component in ~v1 to the component in

the corresponding position in ~v2 to get a new vector. For example
[3, 2, 1,−2] + [2,−1, 4, 1] = [(3 + 2), (2 − 1), (1 + 4), (−2 + 1)] = [5, 1, 5,−1]

More generally, if A = [a1, a2, … an] and B = [b1, b2, … bn], then A + B = [a1 + b1, a2 +

b2, … . . an + bn].

(c) Scalar Multiplication

Multiplying a scalar (real number) times a vector means multiplying every

component by that real number to yield a new vector. For instance, if v�⃗ = [3, 6, 8, 4],

then 1.5 ∗ [3, 6,8, 4] = [4.5, 9, 12, 6]. More generally, scalar multiplication means if d is

a real number and |𝑣⃗𝑣| is a vector [𝑣𝑣1,𝑣𝑣2, … 𝑣𝑣3], then

𝑑 ∗ 𝑣⃗𝑣 = �𝑑𝑣𝑣1,𝑑𝑣𝑣2, …𝑑𝑣𝑣𝑛 (3.2)

(d) Inner Product

The inner product of two vectors also called the dot product or scalar product

denies multiplication of vectors. It is found by multiplying each component in 𝑣𝑣1����⃗ by

the component in 𝑣𝑣2����⃗ in the same position and adding them all together to yield a scalar

value. The inner product is only defined for vectors of the same dimension. The inner

product of two vectors is denoted (𝑣𝑣1����⃗ , 𝑣𝑣2����⃗) or 𝑣𝑣2����⃗ . 𝑣𝑣2����⃗ (the dot product). Thus,

(𝑥⃗𝑥, 𝑦⃗) = 𝑥⃗𝑥 ∗ 𝑦⃗ = ∑ 𝑥𝑥𝑖𝑦𝑖𝑛
𝑖=1 (3.3)

For example, if 𝑥⃗𝑥 = [1, 6, 7, 4] and 𝑦⃗ = [3, 2, 8, 3], then

𝑥⃗𝑥 ∗ 𝑦⃗ = 1(3) + 6(2) + 7(8) + 4(3) = 83

(e) Orthogonality

 Two vectors are orthogonal to each other if their inner product equals zero. In

two dimensional space this is equivalent to saying that the vectors are perpendicular,

or that the only angle between them is a 90 degree angle. For example, the vectors [2,

1, -2, 4] and [3, -6, 4, 2] are orthogonal because

[2, 1, -2, 4] * [3, -6, 4, 2] = 2(3) + 1(-6) - 2(4) + 4(2) = 0

26

(f) Normal Vector

A normal vector (or unit vector) is a vector of length 1. Any vector with an

initial length >0 can be normalized by dividing each component in it by the vector's

length. For example, if 𝑣⃗𝑣 = [2, 4, 1, 2], then

|𝑣⃗𝑣| = �22 + 42 + 12 + 22 = √25 = 5

Then 𝑣⃗𝑣 = [2/5, 4/5, 1/5, 1/5] is a normal vector because

|𝑣⃗𝑣| = �(
2
5

)2 + (
4
5

)2 + (
1
5

)2 + (
1
5

)2 = �25/25 = 1

3.2.2 Matrix Terminology
Matrix Terminology is mentioned as follows.

(a) Square Matrix

A matrix is said to be square if it has the same number of rows as columns. To

designate the size of a square matrix with n rows and columns, it is called n-square.

For example, thematrix below is 3-square.

𝐴𝐴 = �
1 2 3
4 5 6
7 8 9

�

(b) Transpose Matrix

The transpose of a matrix is created by converting its rows into columns; that

is, row 1 becomes column 1, row 2 becomes column 2, etc. The transpose of a matrix

is indicated with a superscriptedT, e.g. the transpose of matrix A is AT. For example, if

𝐴𝐴 = �1 2 3
4 5 6�

Then its transpose is

AT = �
1 4
2 5
3 6

�

(c) Matrix Multiplication

It is possible to multiply two matrices only when the second matrix has the

same number of rows as the first matrix has columns. The resulting matrix has as

many rows as the first matrix and as many columns as the second matrix. In other

27

words, if A is a m x n matrix and B is a n x s matrix, then the product AB is an m x s

matrix.

The coordinates of AB are determined by taking the inner product of each row

of A and each column in B. That is, if A1, … ,Am are the row vectors of matrix A,

and B1, … , Bs are the column vectors of B, then abik of AB equals Ai x Bk. The

sample calculation of matrix multiplication is described as follows.

A = �2 1 4
1 5 2� B = �

3 2
−1 4
1 2

� AB = �2 1 4
1 5 2� �

3 2
−1 4
1 2

� = �9 16
0 26�

ab11 = [2 1 4] �
3
−1
1
� = 2(3) + 1(−1) + 4(1) = 9

ab12 = [2 1 4] �
3
−1
1
� = 2(4) + 1(4) + 4(2) = 16

ab21 = [1 5 2] �
2
4
2
� = 1(3) + 5(−1) + 2(1) = 0

ab22 = [1 5 2] �
2
4
2
� = 1(2) + 5(4) + 2(2) = 26

(d) Identity Matrix

The identity matrix is a square matrix with entries on the diagonal equal to 1

and all other entries equal zero. The diagonal is all the entries aij where i = j, i.e., a11,

a12, …, amm. The n-square identity matrix is denoted variously as In*n, In, or simply I.

The identity matrix behaves like the number 1 in ordinary multiplication, which mean

AI = A, as the example below shows.

𝐴𝐴 = �2 4 6
1 3 5� 𝐼 = �

1 0 0
0 1 0
0 0 1

� 𝐴𝐴𝐼 = �2 4 6
1 3 5� �

1 0 0
0 1 0
0 0 1

� =

𝑎𝑖11 = [2 4 6] �
1
0
0
� = 2(1) + 0(4) + 0(6) = 2

𝑎𝑖12 = [2 4 6] �
0
1
0
� = 2(0) + 4(1) + 6(0) = 4

𝑎𝑖13 = [2 4 6] �
0
0
1
� = 2(0) + 4(0) + 6(1) = 6

𝑎𝑖21 = [1 3 5] �
1
0
0
� = 1(1) + 3(0) + 5(0) = 1

28

𝑎𝑖22 = [1 3 5] �
0
1
0
� = 1(0) + 3(1) + 5(0) = 3

𝑎𝑖23 = [1 3 5] �
0
0
1
� = 1(0) + 3(0) + 5(1) = 5

= �2 4 6
1 3 5�

(e) Orthogonal Matrix

A matrix A is orthogonal if AAT = ATA = I. For example,

𝐴𝐴 = �
1 0 0
0 3 5⁄ −4 5⁄
0 4 5⁄ 3 5⁄

�

is orthogonal because

𝐴𝐴𝑇𝐴𝐴 = �
1 0 0
0 3 5⁄ −4 5⁄
0 4 5⁄ 3 5⁄

� �
1 0 0
0 3 5⁄ −4 5⁄
0 4 5⁄ 3 5⁄

� = �
1 0 0
0 1 0
0 0 1

�

(f) Eigenvectors and Eigenvalues

An eigenvector is a nonzero vector that satisfies the equation

𝐴𝐴𝑣⃗𝑣 = 𝜆𝜆𝑣⃗𝑣 (3.4)

where A is a square matrix, ¸ λ is a scalar, and 𝑣⃗𝑣 is the eigenvector. λ is called an

eigenvalue. Eigenvalues and eigenvectors are also known as, respectively,

characteristic roots and characteristic vectors, or latent roots and latent vectors.

You can find eigenvalues and eigenvectors by treating a matrix as a system of linear

equations and solving for the values of the variables that make up the components of

the eigenvector. For example, finding the eigenvalues and corresponding eigenvectors

of the matrix

𝐴𝐴 = �2 1
1 2�

means applying the above formula to get

𝐴𝐴𝑣⃗𝑣 = 𝜆𝜆𝑣⃗𝑣 = �2 1
1 2� �

𝑥𝑥1
𝑥𝑥2� = 𝜆𝜆 �

𝑥𝑥1
𝑥𝑥2�

in order to solve for λ, x1 and x2. This statement is equivalent to the system of

equations

2x1 + x2 = λx1

x1 + 2x2 = λx2

29

which can be rearranged as

(2 – λ) x1 + x2 = 0

x1 + (2 – λ) 2x2 = 0

A necessary an sufficient condition for this system to have a nonzero vector [x1, x2] is

that the determinant of the coefficient matrix

�
(2 − 𝜆𝜆) 1

1 (2 − 𝜆𝜆)�

be equal to zero. Accordingly,

�
(2 − 𝜆𝜆) 1

1 (2 − 𝜆𝜆)� = 0

(2 –λ) (2-λ) – 1*1 = 0

λ2 - 4λ + 3 = 0

(λ – 3) (λ – 1) = 0

There are two values of λ that satisfy the last equation; thus there are two eigenvalues

of the original matrix A and there are λ1 = 3, λ2 = 1.

 We can find eigenvalues which correspond to these eigenvalues by plugging λ

back in to the equations above and solving for x1 andx2. To find an eigenvetor

corresponding to λ = 3, start with

(2 – λ) x1 + x2 = 0

and substitute to get

(2 – 3) x1 + x2 = 0

Which reduces and rearranges to

x1 = x2

There is an infinite number of values for x1 which satisfy this equation; the only

restriction is that not all the components in an eigenvector can equal zero. So if x1 =

1, then x2 = 1 and an eigenvector corresponding to λ = 3 is [1, 1].

(2 – 1) x1 + x2 = 0

x1 = -x2

So an eigenvector for λ = 1 is [1, -1].

30

3.3 Similarity Measure
Another key factor in the success of the proposed system is the similarity

measure between testApp and malware apps. There are three simple and well known

similarity measures to calculate the similarity. They are the Dice, Jaccard and Cosine

Coefficients. Among these three similarity measures, the system is used Jaccard

similarity to measure the related permissions patterns in testApp and set of trained

malware apps.

Jaccard Similarity Coefficient: The Jaccard index, also known as the Jaccard

similarity coefficient (by Paul Jaccard), is a statistic used for comparing the similarity

and diversity of sample sets. The Jaccard coefficient measures similarity between

sample sets, and is defined as the size of the intersection divided by the size of the

union of the sample sets:

Let D = {D1, D2,……Dn} be the collection of N malware apps. Each

malware app Di can be represented by a corresponding set Si such that Si is a set of

all the permissions contained in Di. Let us denote that set by Di such that

Di={S1,S2,……….. Sn} [1].

Some attributes are present in just a few objects of a data set. As they assume

zero values in most of the cases, they are called asymmetric. Jaccard Similarity

Coefficient measure is used to handle asymmetric binary attributes as only non-zero

values are relevant for the calculation [7].

∑ PeriApp
|v|
i=1 ∗PeriqueryApp

∑ �PeriApp�
2|v|

i=1 +∑ �PeriqueryApp�
2|v|

i=1 − ∑ PeriApp
|v|
i=1 ∗PeriqueryApp

 (3.5)

Where: 𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝑝𝑝 = permissions of trained application

 𝑃𝑃𝑃𝑃𝑃𝑃𝑞𝑢𝑒𝑟𝑦𝐴𝑝𝑝 = permissions of user chosen application

31

3.4 Measuring System Effectiveness
The proposed system uses the statistical method SVD and Jaccard Coefficient

similarity. The system can be used to detect whether the incoming app should be

installed or not on Android Smartphone.
Firstly, the user wants to install a specific app. That is passed to the pre-

processing stages. In database, all significant malware apps are already pre-processing

and calculated the malware related patterns. The input app is compared to this

malware pattern. Finally, the system displays risky level according to the similarity

values.

Accuracy: Accuracy of a system is evaluated on how well the system is able to

distinguish anomalous app or not.

 Accuracy = tp+tn
tp+fp+tn+fn

 (3.6)

Where:

tp (true positive) is an outcome where the system correctly predicts the

malware app.

tn (true negative) is an outcome where the system correctly predicts the

godware app.

fp (false positive) is an outcome where the system incorrectly predicts the

malware app.

fn (false negative) is an outcome where the system incorrectly predicts the

goodware app.

32

CHAPTER 4

THE PROPOSED SYSTEM IMPLEMENTATION

Since the proposed system is implemented by using vector space model,

preprocessing stages and indexing are needed. Therefore, query and documents can

easily and quickly be compared. The result documents are shown in decreasing order

of similarity to the query term. The system uses vector space information retrieval

model and Jaccard Coefficient for similarity ranking. As the non-function

requirements, a computer which has at least Intel@ Core i5-2410M, 640 GB HDD

and 8 GB DDR3 Memory are required to implement our proposed system. As the

functional requirements, we need to install Android Studio, an oreo-versioned mobile

phone to run and test our proposed system.

4.1 Brief Overview of the Proposed System
The proposed system is a malicious application detection system based on

permission information from Manifest file. The system uses static analysis for

malware detection which means that applications are not executed or analyzed at run

time. The proposed system comprises into two groups as follows.

For training phase,

1. Extract the permissions from JSON files of ApkMetaReport folder for static

analysis of android malware 2017.(https://www.kaggle.com/goorax/static-analysis-of-

android-malware-of-2017)

2. Preprocess the extracted permissions such as redundant permissions removal.

3. Perform statistical SVD approach.

For testing phase,

1. Extract the permissions from the tested App.

2. Find the permission-correlation pattern (T) of it.

3. Find the similarity value between trained-permission patterns and T.

33

https://www.kaggle.com/goorax/static-analysis-of-android-malware-of-2017
https://www.kaggle.com/goorax/static-analysis-of-android-malware-of-2017

4.2 Training Phase of the Proposed System

4.2.1 Data Collection
To implement the proposed system, the first thing is to collect the information

about the risky apps as much as. According to the literature, there are so many ways

to analyze different kinds of apps such as by analyzing signature features, behavior

features or anomaly features and so on. Among them, the proposed system analyzes

the apps based on permissions. Because permission is the main gate to allow the

application (which operations must be done). So, this is the fact to learn about

permissions of android application.

There are a lot of permissions that are declared by Google. Moreover, there

are also customized permissions. The specific permission has its own task such as

reading contacts, or sending sms or getting GPS, etc. Some of them are dangerous.

Some of them are normal. Some of them are nothing meaning etc. But when

analyzing permissions, it isn't enough to know which permissions are dangerous and

which permissions are normal. One application can use as much as permissions

according to the developer. And, it cannot be concluded that an application has high

risk by seeing one of dangerous permissions.

So, it is needed to analyze which correlation patterns of permissions are

usually involved in high risk application. Singular Value Decomposition (SVD)

technique is applied to get the correlation patterns of permissions. To apply SVD

technique, the original matrix (permission-app matrix) is needed to get. For choosing

the training dataset, malware dataset is needed to train since the propose of the system

is to give the knowledge that how much risk level has an incoming application.

Malware dataset didn’t download easily as malware based dataset are very restricted.

The required dataset is obtained from https://www.kaggle.com/goorax/static-

analysis-of-android-malware-of-2017. Kaggle website describes the specific analysis

results of malware applications by separating into four folders. These folders are

apkMetaReport, byteCodeReport, virusTotalReport, and assestReport. apkMetaReport

folder contains the contents of Manifest.xml files. byteCodeReport folder contains the

contents of classes.dex. virusTotalReport folder contains the reports of virusTotal

service. assestReport folders contains names of assests and lib contents. So,

apkMetaReport folder is downloaded. That dataset contains over 4000 json files (one

34

https://www.kaggle.com/goorax/static-analysis-of-android-malware-of-2017
https://www.kaggle.com/goorax/static-analysis-of-android-malware-of-2017

Json file for one malware application). An android app name is identified by its

sha256 hash sum, which is used by file name.

4.2.2 Dataset Description
The dataset is obtained from https://www.kaggle.com/goorax/static-analysis-

of-android-malware-of-2017. For static analysis of android malware 2017, this dataset

contains 4000 JSON files. The JSON files contains the method names. An Android

app name is uniquely identified by its sha256 hash sum, which is used as the file

name. The following folders store specific analysis results:

1. ApkMetaReport: Contents of the AndroidManifest.xml.

2. ByteCodeReport: Contents of the classes.dex.

3. VirusTotalReport: Report of the Virustotal service.

4. AssetReport: Names of assets and lib contents.

Among them, the proposed system uses ApkMetaReport file. The analyzed

malware was originated at Technical University Berlin. It is a part of the Virusshare

repository. The static analysis extracted information from the AndroidManifest.xml.

4.2.3 Preprocessing

We need to preprocess the downloaded dataset to be ready to use as the trained

dataset in our proposed system. There are two steps for preprocessing phase:

tokenization and removing Duplicate Permissions.

Tokenization: Computers do not understand the structure of a natural language

document and cannot automatically recognize words and sentences. So, humans must

program the computer to identify what constitutes and individual or distinct word

referred to as a token. Such a program is commonly called a tokenizer or parser or

lexer. Tokenizing is the process of breaking of stream of text up into words, phrases,

symbols or other meaningful elements.

To store the permissions for each application, we extract the required

permissions from the json dataset by tokenization. Then we build original matrix

(permission-app matrix).

35

https://www.kaggle.com/goorax/static-analysis-of-android-malware-of-2017
https://www.kaggle.com/goorax/static-analysis-of-android-malware-of-2017

Removing Duplicate Permissions: Some permission is frequently occurring and that

do not represent any content of the application. Duplicate permissions are list of

permissions that the developer includes them unintentionally. So, in this phase,

duplicate permissions are removed before building the original malware vector.

4.2.4 Implementation Steps for the Training Phase

 The implementation steps for the training phase are as follows.

Step 1 Place JSON files under ‘download’ folder of emulator’s internal storage.

Step 2 For each JSON file,

Extract Permissions and do Preprocessing phase

Create a Permission_App relation (perID and appID)

Step 3 Generate the Boolean permission_app matrix and save it to database

Step 4 Compute S, V, U metrics (using Singular Value Decomposition) and

reduce the metrics with k dimension (suppose: k=4).

Step 5 Save S-1 and U metrics to the corresponding data files

Step 6 Transpose V (malApp vector) and save it to the corresponding data file

Figure 4.1 Process Flow Diagram for Training Phase

36

4.3 Testing Phase of the Proposed System

Testing phase contains two sub-phases. Figure 4.2 (a) is about finding the

permission-correlation pattern of the user chosen application and the steps are as

follow.

Step 1 Accept a test app.

Get Permission Values of <uses-permission> ElementfromAndroid’s

Manifest.xml (by getRequestedPermissionList() method)

Step 2 Generate testApp vector (q).

Step 3 Calculate queryApp vector by computing qT U S-1

Figure 4.2 (a) Process Flow Diagram for creating queryApp Vector

The figure 4.2 (b) is about giving information to the user for the user chosen

application’s risk level. The steps of creating queryApp vector are as follows.

Step 1 Fetch VT from corresponding data file.

Step 2 Compute the similarity values between queryApp vector and malApp vectors

(VT) and save them to temporary similarity result array.

37

Step 3 Choose the highest similarity value (h) from the similarity result array.

Step 4 If h is greater than or equal to maximum threshold value (0.8000), show the

message “The application has high risk permissions”.

Step 5 Else if h is greater than or equal to minimum threshold value (0.5847), show

the message “The application has medium risky permissions”. Otherwise,

show the message “The application has low risk permissions”.

Figure 4.2 (b) Process Flow Diagram for Finding Risk Level

4.4 Database Design of the Proposed System

Our proposed system needs to use the following three tables.

1. PermissionAppMatrix table,

2. ApplicationData table and

3. PermissionData table

38

PermissionAppMatrix table stores the relationship of the permissions and

applications as element field (1 means exist, and 0 means not exist). That table has

composite primary key to join with both of PermissionData table and ApplicationData

table. ApplicationData table is used to store the general information of the

applications with appName for application’s name and appIcon for application’s icon.

PermissionData table is used to store the permission name (such as

android.permission.INTERNET).

Figure 4.3 Database Design of the Proposed System

 And the resulted matric are needed to save as files after applying Singular

Value Decomposition (SVD) method to use later in calculation of testApp vector.

4.5 Analysis and Empirical Result

There is over 4000 malware dataset as described in Section 4.2. But the

system cannot be trained with all of that according to phone storage and emulator

performance. Firstly, the proposed system is trained with data beginning from 50

dataset by adding 50 JSON files again and again to the existing dataset. The emulator

was hung at trained dataset 200 on 4G RAM. So, the proposed system is trained

dataset beginning from 250 dataset on a laptop which has 8G RAM. It took a lot of

time to train that amount of dataset. According to emulator’s performance and mobile

phone storage, 300 dataset is more suitable on the current situation.

At that time, there was another problem that is which 300 dataset will be

trained among these 4000 malware apps. So, 4000 dataset was separated by 300. And

39

the proposed system is trained with different 300 datasets to know which dataset has

the more features of current environment malware apps by testing 95 malware apps.

According to the following Figure 4.5, D4 dataset includes the more features of the

current environment malware apps. So, D4 dataset is chosen to train on the proposed

system.

Figure 4.4 Accuracy Comparison of Different Trained Dataset

In figure 4.4, D1, D2, D3, D4 and D5 are different Malware Datasets

contained 300 JSON files from ApkMetaReport Malware dataset. The system is

trained with all of 300 separated dataset of 4000 malware apps. But at that figure 4.4,

only the appearance datasets are highlighted.

After getting the best trained dataset, we have to found out which k value will

be the best on our trained data according to SVD method. So, we analyze different k

value on our trained dataset.

According to the figure 4.5, k=4 is the best value of the others. This figure

shows the overall accuracy of the proposed system at different k value. But only k=2

to k=5 are highlighted among a lot of different k value.

40

Figure 4.5 Accuracy Comparison of Different k value for Malware Detection

In figure 4.6, the correctness of malware is 100% at k=2. But the correctness

of goodware is too low. At k=3, also like k=2. At k=4, the correctness of malware

decreases a little, but the correctness of goodware is significantly high. So, the

accuracy of the system also increases significantly than others. At later k value, the

correctness of malware is lower.

Figure 4.6 Accuracy Comparison of Different k value for Malware and

Goodware Detection

41

Finally, the proposed system is implemented on trained dataset (300 JSON

files) which has the most suitable malware apps of the current environment with k=4

according to our analysis of figure (4.7).

No: of Test Data TP TN FP FN Acccuracy
120 83 19 5 13 85%

Table 4.1 Accuracy for the Proposed System

And the final accuracy is shown in table 4.1. The accuracy of proposed system

is 85% on the tested data 120 including malware and goodware.

4.4 Screen Transactions of the Proposed System

 Figure 4.7 shows the screen for retrieving original permission-app matrix. On

the other hand, that screen design shows the relationships between trained malware

applications and permissions.

Figure 4.7 Screen Design for Retrieving Original permission-app Matrix

42

Figure 4.8 Screen Design for Retrieving Singular Value Matrix

Figure 4.8 describes the screen for retrieving singular value matrix. That

matrix is the concept matrix of eigenvalue matrix and U matrix which are gotten after

applying Singular Value Decomposition (SVD) method.

Figure 4.9 mentions the screen for retrieving eigenvalue matrix. That matrix is

the relationship of trained malware applications and the concept matrix (singular

value matrix) that are gotten after applying Singular Value Decomposition (SVD).

Figure 4.10 shows the screen for retrieving U matrix. That matrix is the

relationship of permission of each trained malware application and the concept matrix

(singular value matrix) that are gotten after applying Singular Value Decomposition

(SVD).

43

Figure 4.9 Screen Design for Retrieving Eigen Value Matrix

Figure 4.10 Screen Design for Retrieving U Matrix

44

Figure 4.11 (a+b) Screen Design for Choosing Application to detect

Figure 4.12 Screen Design for showing permission of chosen app

45

Figure 4.11 explains the testing screen design for choosing application to

detect. Users need to browse an apk file under Download folder before installing it.

Figure 4.12 shows the screen after browsing the user chosen application. That

screen shows the permissions which are used in the user chosen application.

Figure 4.13 Screen Design for showing the similarity result when pressing the

analyze risk level button

Figure 4.13 mentions the screen for retrieving the message about the risk level

of user chosen application. User can know the risk level of the chosen application

before installing it by using our proposed system.

46

CHAPTER 5

CONCLUSION

 Focus of attackers and malware writers has changed to mobile devices due to

the increased adoption of mobile devices for business and personal purposes and

comparatively lesser security controls. Therefore, App stores are common targets for

attackers to distribute malware and malicious apps. The system proposes to detect the

risk level for anomalous Android applications. The malware dataset is identified using

Singular Value Decomposition (SVD) based approach where a permission-malapp

matrix needs to be developed and then query-app can be detected from the set of risky

permissions. However, the growing amount and diversity of Android malware have

significantly weakened the effectiveness of the conventional defense mechanisms, and

thus, Android platform often remains unprotected from new and unknown malware

[9].

 The proposed system suggests that the implementation is well suited by

finding Jaccard Similarity Values between existing malwares and the user query apps.

As the conclusion, the Jaccard Similarity measures are well suited for mediate amount

of data set and can effectively be helpful in finding similar values between user query

apps and malwares. So, the system enables users to search similar risky apps as

efficiently and as fast as possible. Therefore, the system can save time in finding the

risky apps even the users didn’t know which apps are closely related and can access

the system effectively without an internet connection.

5.1 Advantages of the System
 In the malware detection system, the nature of malware permissions’

signatures is important. The statistical method, Singular Value Decomposition (SVD)

can find the correlation patterns of malware permissions’ signatures involved in most

malware applications. Therefore, the proposed system methodology is effective to

detect android malwares. Jaccard Coefficient is more effective to calculate the

similarity on the data objects that have binary attributes. And the proposed system’s

trained dataset uses binary attributes for the relation of permission and application. So,

finding the similarity value between the permissions of user chosen application and

each trained application by using Jaccard Coefficient makes the system more effective.

47

And the system leads to know the permission risk level of user chosen application

even if user doesn’t know the permissions in details. The system is very effective for

permission only based detection as the used method is computationally efficient in

finding the correlation patterns of malware’s permission nature.

5.2 Limitations of the System

 There are some limitations in the proposed system. The system cannot

grantee advanced obfuscation techniques such as polymorphic and metamorphic

malware. Alternatively, it is not significant at detecting the disguised malware as the

goodware since the disguised malware may use many goodware permissions as much

as they can.

5.3 Further Extension
There are a number of directions for further extension. The importance of

mobile phones in our everyday life and many activities is undeniably unending.

Therefore, this system could also be implemented on not only android OS but also

IOS. Moreover, the proposed system should be implemented by considering

additional features (signatures) to improve the capabilities and efficiency. On the

other hand, malware classification system can be extended in addition to malware

detection system by using specific classification method.

48

AUTHOR’S PUBLICATION

[1] Htet Htet Win, Zon Nyein Nway, “Permission-Based Anomalous

Application Detection on Android Smart Phone”, the Proceedings of

the 9th Conference on Parallel and Soft Computing (PSC 2018),

Yangon, Myanmar, 2018.

49

REFERENCES

[1] A. Marcus and J. Maletic, “Using Latent Semantic Analysis to Identify

Similarities in Source Code to Support Program Understanding”, Proc. of 12th

IEEE International Conference on Tools with Artificial Intelligence, November

2000, pp.46-53.

[2] C. Hein, “Manifest Files Classification of Android Malware”, the 8th

International Conference on Application of Information and Communication

Technologies, Mandalay, Myanmar, December 2014, pp.119-133.

[3] D. Kalman, “A Singular Value Decomposition: The SVD of a Matrix”, The

American University, Washington, DC 20016, February13, 2002.

[4] F. Tchakounte, “Permission-based Malware Detection Mechanisms on Android:

Analysis and Perspectives”, Journal of Computer Science and Software

Application, December 2014, pp.63-77.

[5] G.N. Bharathi, T. Anusha, R.S. MeenaKumari, P. Aparna, “Effective Permission

Analysis and Complete Security for Android Application”, SSRG International

Journal of Computer Science and Engineering, March 2017, pp.97-104.

[6] H. Shahriar, V. Vlincy, “Anomalous Android Application Detection with Latent

Semantic Indexing”, Conference of 40th Annual Computer Software and

Applications, 2016, pp.624-625.

[7] I. Toure, A. Gangopadjyay, “Analyzing Terror Attacks using Latent Semantic

Indexing”, ISBN-978-1-4799-1535-4, 2013, pp.334-337.

[8] K. Baker, “Singular Value Decomposition Tutorial”, March 29, 2005.

[9] K. Dunham, S. Hartman, J. Morales, M. Quintans and T. Strazzere,

“Android_Malware_and_Analysis”, ISBN-13: 978-1-4822-5220-0, 2015.

[10] L. Jin, S. Lichao, Y. Qiben, L. Zhiqiang, S.A. Witawas, Y. Heng, “Significant

Permission Identification for Machine Learning Based Android Malware

Detection”, IEEE Transactions on Industrial Informatics, 2017.

[11] M.A. Siddiqui, “Data Mining Methods for Malware Detection”, Modeling and

Simulation in the College of Sciences, Orlando, Florida, 2008.

50

[12] N.V. Duc, P.T. Giang, P.M. Vi, “Permission Analysis for Android Malware

Detection”, Proc. of the 7th Vast – AIST Workshop “Research Collaboration:

Preivew and Perspective”, At Hanoi, Vietnam, November 2015, pp.207-216.

[13] R.K. Jidigam, “Metamorphic Detection Using Singular Value Decomposition”,

Master's Projects, San Jose State University, December 2013.

[14] T.S. Barhoom, M.I. Nasam, “Malware Detection Based on Permissions on

Android Platform Using Data Mining”, Journal of Engineering Research and

Technology, Volume 3, Issue 3, September 2016, pp.51-57.

[15] V.N. Cooper, H. Shahriar, H.M. Haddad, “A Survey of Android Malware

Characteristics and Mitigation Techniques”, Proc. of the 11th International

Conference on Information Technology: New Generations, IEEE CPS, Las

Vegas, USA, April 2014, pp.327-332.

[16] Z. Aung, W. Zaw, “Permission-Based Android Malware Detection”, Internal

Journal of Scientific and Technology Research Volume 2, Issue 3, March 2013,

pp.228-234.

51

APPENDIX

Sample Calculation for the Proposed System
App1 App2 App3 testApp

Access_Network_State 1 1 1 1

Access_Wifi_State 1 1 1 1

Internet 1 1 1 1

Read_Phone_State 1 1 1 1

Write_External_Storage 1 1 1 1

Mount_Unmount_Filesystems 1 1 0 0

Read_External_Storage 1 0 0 1

Install_Shortcut 1 1 1 0

Uninstall_Shortcut 1 0 0 0

Read_Settings 1 1 0 0

Receive_Boot_Completed 1 0 0 1

Get_Tasks 1 0 1 0

System_Alert_Window 1 0 1 0

Wake_Lock 1 0 1 1

Get_Accounts 1 0 0 0

Raised_Thread_Priority 0 1 0 0

Write_Secure_Settings 0 1 0 0

Write_Settings 0 1 0 0

Change_Network_State 0 1 0 1

Receive_MMS 0 1 0 0

Receive_Wap_Push 0 1 0 0

52

Read_SMS 0 1 0 1

Send_SMS 0 1 0 1

Receive_SMS 0 1 0 1

ATA =
















969
6178
9815

By ATA – λI = 0

















969
6178
9815

 -
















λ
λ

λ

00
00
00

 = 0

















−
−

−

λ
λ

λ

969
6178
9815

 = 0

(-1)1+1(15-λ)�17 − 𝜆 6
6 9 − 𝜆�+(-1)1+2(8)�8 6

9 9 − 𝜆�+(-1)1+3(9)�8 17 − 𝜆
9 6 �=0

(15-λ) ()()[]36917 −−− λλ -8 ()[]5498 −− λ +9 ()[]λ−− 17948 =0

(15-λ)[153 − 17λ − 9λ + λ2 − 36]-8[72 − 8𝜆 − 54]+9[48 − 153 + 9𝜆]=0

(15-λ)(λ2 − 26λ + 117)-8(18 − 8 𝜆) +9(9 𝜆 − 105)=0

−λ3 + 41λ2 − 362λ + 666 = 0

‘λ1=29.4907

‘λ2=9

‘λ3=2.5093

S1=�λ1=5.4305

S2=�λ2=3

S3=�λ3=1.5841

53

S=
















5841.100
030
004305.5

S-1=
















6313.000
03333.00
001842.0

By (𝐴𝑇𝐴 − 𝜆𝐼) 𝑣⃑=0�⃑

Let λ1=29.4907

















969
6178
9815

-
















4307.2900
04307.290
004307.29

𝑣⃑=0�⃑

















−
−

−

4907.2069
64907.128
984907.14

















x
x
x

3

2

1

=
















0
0
0

-14.4907x1+8x2+9x3 = 0 ……... Eq:1

8x1-12.4907x2+6x3 = 0 ……... Eq:2

9x1+6x2-20.4907x3 = 0 ……... Eq:3

By Eq:1/9-Eq:2/6,

-1.6101x1 +0.8889x2 +x3 = 0

1.3333x1 -2.0818x2 +x3 = 0

‘+ ‘+ ‘-

-2.9434x1 +2.9707x2 = 0 …….. Eq:4

54

By Eq:2/8-Eq:3/9,

x1 -1.5613x2 +0.75x3 = 0

x1 +0.6667x2 -2.2767x3 = 0

‘- ‘- ‘+

-2.228x2 +3.0267x3 = 0 …….. Eq:5

By Eq:4/2.9707+Eq:5/2.228,

0.9908x1 +x2 = 0

-x2 +1.3585x3 = 0

0.9908x1 +1.3585x3 = 0

Let x1=1,

1.3585x3 =-0.9908

‘x3=-0.7293

In Eq:4, 2.9707x2 =2.9434

 x2 =0.9908

‘v=
















− 7293.0
9908.0
1

Length, L = �(1)2 + (0.9908)2 + (−0.7293)2 =1.5854

Normalized vector, v1=
















− 46.0
625.0

6308.0

55

Let λ2 = 9

















069
688
986

















x
x
x

3

2

1

=
















0
0
0

6x1+8x2+9x3 = 0 ……... Eq:1

8x1+8x2+6x3 = 0 ……... Eq:2

9x1+6x2 = 0 ……... Eq:3

By Eq:1-Eq:2,

6x1 +8x2 +9x3 = 0

8x1 +8x2 +6x3 = 0

‘- ‘- ‘-

--

-2x1 +3x2 = 0 ……... Eq:4

Let x1 =1,

3x3 =2

x3 =0.6667

In Eq:3,

6x2 =-9

‘x2 =-1.5

‘v=















−
6667.0

5.1
1

Length, L = �(1)2 + (−1.5)2 + (0.6667)2 =1.9221

Normalized vector, v2=















−

3469.0
7804.0

5203.0

56

Let λ3=2.5093,

















4907.669
64907.148
984907.12

















x
x
x

3

2

1

=
















0
0
0

12.4907x1+8x2+9x3 =0 ……... Eq:1

8x1+14.4907x2+6x3 =0 ……... Eq:2

9x1+6x2+6.4907x3 =0 ……... Eq:3

By Eq:1/9-Eq:2/6,

1.3879x1 +0.8889x2 +x3 = 0

1.3333x1 +2.4151x2 +x3 = 0

‘- ‘- ‘-

0.0546x1 -1.5262x2 = 0 …… Eq:4

By Eq:2/8-Eq:3/9,

x1 +1.8113x2 +0.75x3 = 0

x1 +0.6667x2 +0.7212x3 = 0

‘- ‘- ‘-

--

1.1446x2 +0.0228x3 = 0 ……. Eq:5

By Eq:4/1.5262+Eq:5/1.1446,

0.0358x1 -x2 = 0

 x2 +0.0252x3 = 0

--

0.0358x1 +0.025x3 = 0

57

Let x1=1, 0.025x3 = -0.0358

x3 =-1.4206

In Eq:4, -1.5262x2 =-0.0546

x2 =0.0358

‘v=
















− 4206.1
0358.0
1

Length, L = �(1)2 + (0.0358)2 + (−1.4206)2 =1.7376

Normalized vector, v3=
















− 8176.0
0206.0
5755.0

V=
















−−
−

8176.03469.046.0
0206.07804.0625.0
5755.05203.06308.0

By U =AVS-1

 =A
















−−
−

5162.01156.00847.0
013.02601.01151.0

3622.01734.01162.0

58

 =



















































































−
−
−
−
−
−
−
−
−

−
−
−

−

−

−
−
−
−
−
−

013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
3633.01734.01162.0
1529.0289.00315.0
1529.0289.00315.0
1529.0289.00315.0

3633.01734.01162.0
3763.00867.02313.0
3633.01734.01162.0
1399.00289.01466.0

3633.01734.01162.0
3763.00867.02313.0
1399.00289.01466.0
1399.00289.01466.0
1399.00289.01466.0
1399.00289.01466.0
1399.00289.01466.0

Vk
T= 








−

−
3469.07804.05203.0

46.0625.06308.0

Sk
-1=�0.1842 0

0 0.3333�

New App,

App1(0.6308,0.5203)

App2(0.625,-0.7804)

App3(-0.46,0.3469)

59

New QueryApp,

‘queryApp =qTUkSk
-1= []2601.04573.1 − Sk

-1

 = []0867.02684.0 −

By Jaccard Similarities,

Sim(App1,queryApp) =

 =

= 0.1991

Sim(App2,queryApp) =

=

= 0.9788

Sim(App3,queryApp) =

=

= -0.2719

.6308 * 0.2684 + 0.5203 * (-0.0867)

(0.6308)2 + (0.5203)2 + (0.2684)2 + (-0.0867)2 – 0.1242

0.12420

0.3979 + 0.2707 + 0.072 + 0.0075 – 0.1242

0.625 * 0.2684 + (-0.7804) * (-0.0867)

(0.625)2 + (-0.0784)2 + (0.2684)2 + (-0.0867)2 – 0.2355

0.2355

0.3906 + 0.006 + 0.072 + 0.0075 – 0.2355

-0.46 * 0.2684 + 0.3469 * (-0.0867)

(-0.46)2 + (0.3469)2 + (0.2684)2 + (-0.0867)2 + 0.1536

-0.1536

0.2116 + 0.1203 + 0.072 + 0.0075 + 0.1536

60

 App1 App2 App3 testApp

Access_Network_State 1 1 1 1

Access_Wifi_State 1 1 1 0

Internet 1 1 1 1

Read_Phone_State 1 1 1 0

Write_External_Storage 1 1 1 1

Mount_Unmount_Filesystems 1 1 0 0

Read_External_Storage 1 0 0 1

Install_Shortcut 1 1 1 0

Uninstall_Shortcut 1 0 0 0

Read_Settings 1 1 0 0

Receive_Boot_Completed 1 0 0 0

Get_Tasks 1 0 1 0

System_Alert_Window 1 0 1 0

Wake_Lock 1 0 1 1

Get_Accounts 1 0 0 0

Raised_Thread_Priority 0 1 0 0

Write_Secure_Settings 0 1 0 0

Write_Settings 0 1 0 0

Change_Network_State 0 1 0 0

Receive_MMS 0 1 0 0

Receive_Wap_Push 0 1 0 0

Read_SMS 0 1 0 0

Send_SMS 0 1 0 0

Receive_SMS 0 1 0 0

61

ATA =
















969
6178
9815

By ATA – λI = 0

















969
6178
9815

 -
















λ
λ

λ

00
00
00

 = 0

















−
−

−

λ
λ

λ

969
6178
9815

 = 0

(-1)1+1(15-λ)�17 − 𝜆 6
6 9 − 𝜆�+(-1)1+2(8)�8 6

9 9 − 𝜆�+(-1)1+3(9)�8 17 − 𝜆
9 6 �=0

(15-λ) ()()[]36917 −−− λλ -8 ()[]5498 −− λ +9 ()[]λ−− 17948 =0

(15-λ)[153 − 17λ − 9λ + λ2 − 36]-8[72 − 8𝜆 − 54]+9[48 − 153 + 9𝜆]=0

(15-λ)(λ2 − 26λ + 117) -8(18 − 8 𝜆) +9(9 𝜆 − 105)=0

−λ3 + 41λ2 − 362λ + 666 = 0

‘λ1=29.4907

‘λ2=9

‘λ3=2.5093

S1=�λ1=5.4305

S2=�λ2=3

S3=�λ3=1.5841

S=
















5841.100
030
004305.5

62

S-1=
















6313.000
03333.00
001842.0

By (𝐴𝑇𝐴 − 𝜆𝐼) 𝑣⃑=0�⃑

Let λ1=29.4907

















969
6178
9815

-
















4307.2900
04307.290
004307.29

𝑣⃑=0�⃑

















−
−

−

4907.2069
64907.128
984907.14

















x
x
x

3

2

1

=
















0
0
0

-14.4907x1+8x2+9x3 = 0 ……... Eq:1

8x1-12.4907x2+6x3 = 0 ……... Eq:2

9x1+6x2-20.4907x3 = 0 ……... Eq:3

By Eq:1/9-Eq:2/6,

-1.6101x1 +0.8889x2 +x3 = 0

1.3333x1 -2.0818x2 +x3 = 0

‘+ ‘+ ‘-

-2.9434x1 +2.9707x2 = 0 …….. Eq:4

By Eq:2/8-Eq:3/9,

x1 -1.5613x2 +0.75x3 = 0

x1 +0.6667x2 -2.2767x3 = 0

‘- ‘- ‘+

-2.228x2 +3.0267x3 = 0 …….. Eq:5

63

By Eq:4/2.9707+Eq:5/2.228,

0.9908x1 +x2 = 0

-x2 +1.3585x3 = 0

0.9908x1 +1.3585x3 = 0

Let x1=1,

1.3585x3 =-0.9908

‘x3 =-0.7293

In Eq:4, 2.9707x2 =2.9434

 x2 =0.9908

‘v=
















− 7293.0
9908.0
1

Length, L = �(1)2 + (0.9908)2 + (−0.7293)2 =1.5854

Normalized vector, v1=
















− 46.0
625.0

6308.0

Let λ2 = 9

















069
688
986

















x
x
x

3

2

1

=
















0
0
0

6x1+8x2+9x3 =0 ……... Eq:1

8x1+8x2+6x3 =0 ……... Eq:2

9x1+6x2 =0 ……... Eq:3

64

By Eq:1-Eq:2,

6x1 +8x2 +9x3 = 0

8x1 +8x2 +6x3 = 0

‘- ‘- ‘-

--

-2x1 +3x2 = 0 ……... Eq:4

Let x1=1,

3x3 =2

x3=0.6667

In Eq:3,

6x2=-9

‘x2=-1.5

‘v=















−
6667.0

5.1
1

Length, L = �(1)2 + (−1.5)2 + (0.6667)2 =1.9221

Normalized vector, v2=















−

3469.0
7804.0

5203.0

Let λ3=2.5093,

















4907.669
64907.148
984907.12

















x
x
x

3

2

1

=
















0
0
0

12.4907x1+8x2+9x3 =0 ……... Eq:1

8x1+14.4907x2+6x3 =0 ……... Eq:2

9x1+6x2+6.4907x3 =0 ……... Eq:3

65

By Eq:1/9-Eq:2/6,

1.3879x1 +0.8889x2 +x3 = 0

1.3333x1 +2.4151x2 +x3 = 0

‘- ‘- ‘-

0.0546x1 -1.5262x2 = 0 …… Eq:4

By Eq:2/8-Eq:3/9,

x1 +1.8113x2 +0.75x3 = 0

x1 +0.6667x2 +0.7212x3 = 0

‘- ‘- ‘-

--

1.1446x2 +0.0228x3 = 0 ……. Eq:5

By Eq:4/1.5262+Eq:5/1.1446,

0.0358x1 -x2 = 0

 x2 +0.0252x3 = 0

--

0.0358x1 +0.025x3 = 0

Let x1=1, 0.025x3 = -0.0358

x3 =-1.4206

In Eq:4, -1.5262x2 =-0.0546

x2 =0.0358

‘v=
















− 4206.1
0358.0
1

Length, L = �(1)2 + (0.0358)2 + (−1.4206)2 =1.7376

66

Normalized vector, v3=
















− 8176.0
0206.0
5755.0

V=
















−−
−

8176.03469.046.0
0206.07804.0625.0
5755.05203.06308.0

By U =AVS-1

 =A
















−−
−

5162.01156.00847.0
013.02601.01151.0

3622.01734.01162.0

67

 =



















































































−
−
−
−
−
−
−
−
−

−
−
−

−

−

−
−
−
−
−
−

013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
3633.01734.01162.0
1529.0289.00315.0
1529.0289.00315.0
1529.0289.00315.0

3633.01734.01162.0
3763.00867.02313.0
3633.01734.01162.0
1399.00289.01466.0

3633.01734.01162.0
3763.00867.02313.0
1399.00289.01466.0
1399.00289.01466.0
1399.00289.01466.0
1399.00289.01466.0
1399.00289.01466.0

Vk
T= 








−

−
3469.07804.05203.0

46.0625.06308.0

Sk
-1=�0.1842 0

0 0.3333�

New App,

App1(0.6308,0.5203)

App2(0.625,-0.7804)

App3(-0.46,0.3469)

68

New QueryApp,

‘queryApp =qTUkSk
-1= []7225.07037.0 Sk

-1

 = []2408.01296.0

By Jaccard Similarities,

Sim(App1,queryApp) =

 =

= 0.3862

Sim(App2,queryApp) =

=

= -0.1849

Sim(App3,queryApp) =

=

= 0.0624

Similarity results for the testing of malware app and goodware app

Applications testApp1(Malware) testApp2(Goodware)
App1 0.1989 0.3862
App2 0.9788 -0.1849
App3 -0.2719 0.0624

0.6308 * 0.1296 + 0.5203 * 0.2408

(0.6308)2 + (0.5203)2 + (0.1296)2 + (0.2408)2 – 0.1242

0.2071

0.3979 + 0.2707 + 0.0168 + 0.058 – 0.2071

0.625 * 0.1296 + (-0.7804) * 0.2408

(0.625)2 + (-0.0784)2 + (0.1296)2 + (0.2408)2 + 0.1069

-0.1069

0.3906 + 0.006 + 0.0168 + 0.058 + 0.1069

-0.46 * 0.1296 + 0.3469 * 0.2408

(-0.46)2 + (0.3469)2 + (0.1296)2 + (0.2408)2 – 0.0239

0.0239

0.2116 + 0.1203 + 0.0168 + 0.058 – 0.0239

69

	1
	2
	3
	4
	5
	ABSTRACT

	6
	7
	1.4 Organization of the Thesis
	This thesis is organized into five chapters.

	8
	CHAPTER 2
	 Data breaches and/or leaks: Of course, if you have experienced some data leak you should always check to determine the source of the problem--and the process of checking obviously includes examining your smartphone.

	9
	10
	11
	Chapter 5
	CONCLUSION
	5.1 Advantages of the System
	5.3 Further Extension

	12
	13
	14

