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ABSTRACT 

 

Information applications are widely used by millions of users to perform many 

different activities. Android-based smart phone users can get free applications from 

Android Application Market. But, these applications were not certified by legitimate 

organizations and they may contain malware applications that can steal private 

information from users.  

The proposed system develops a permission-based malware detection to 

protect the privacy of android smart phone users. This system monitors various 

permissions obtained from android applications and analyses them by using a 

statistical technique called Singular Value Decomposition (SVD) to estimate the 

correlations of permissions. The dataset including approximately 4000 malware JSON 

files are downloaded from https://www.kaggle.com/goorax/static-analysis-of-android-

malware-of-2017. The training phase emphasizes on the malware samples 

(approximately 300) which includes the most significant patterns of the current 

malware environment according to the analysis results. The testing phase is conducted 

on 120 malware and goodware apps.  

 The proposed system evaluates the risk level (High, Medium, and Low) of 

Android applications based on the correlation patterns of permissions. The overall 

accuracy of the system is 85% for malware applications and goodware applications as 

the test results.  
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CHAPTER 1 

INTRODUCTION 

Android is the powerful operating system supporting a large number of 

applications in smart phones. These applications make life more comfortable. With 

the repaid growing of Android application every day, there are growing threats for the 

mobile users by installing more malwares without ability to detect them before 

installing the applications to the user device. Malware name came from “Malicious 

Software”, its software was designed to secretly access a system without the owner’s 

device knowledge. A key challenge is to identify a suspected application as 

anomalous (malware). Therefore, the system that can detect whether the particular 

app is malicious or not is proposed and the installation can be canceled if the 

permissions are unacceptable [5].  

According to the future of mobile, there were 4.1 billions of Internet users at 

2018. And there will be 5.4 billions at 2025. As the Internet users are increasing 

around the world. On the other hand, there also increases the people who connect the 

Internet via mobile. So, there will be 80% of Internet users who make Internet 

connections via mobile at 2025. Moreover, 50% of transactions will be made by 

phone at 2050.  

There are a lot of attacks such as device attack, network attack or datacenter 

attack, etc. Moreover, there are many different ways to attack. For example, in device 

attack, attackers can attack our mobile phone through browser, phone, sms or 

applications, etc. Among them, the system is intended to detect applications which 

use unintended permissions (Misconfigured apps can open doors to attackers by 

providing unintended permissions). 

 

1.1 Overview of the Proposed System 
To implement the proposed system, the first thing is to collect the information 

about the risky apps as much as we can and then need to analyze the nature of risky 

apps. According to the literature, there are so many ways to analyze different kinds of 

apps such as by analyzing signature features, behavior features or anomaly features 

and so on. Among them, we choose to analyze the apps based on permissions. 
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Because permission is the main gate to allow the application (which operations must 

be done). So, the permissions of android application are need to learn.  

There are a lot of permissions that are declared by Google. Moreover, there 

are also customized permissions. The specific permission has its own task such as 

reading contacts, or sending sms or getting GPS, etc. Some of them are dangerous. 

Some of them are normal. Some of them are nothing meaning etc. But when 

analyzing permissions, it isn't enough to know which permissions are dangerous and 

which permissions are normal. One application can use as much as permissions 

according to the developer.  And, we cannot conclude that an application has high risk 

by seeing one of dangerous permissions. 

So, the correlation patterns of permissions are usually involved in high risk 

application. To get the correlation patterns of permissions, Singular Value 

Decomposition (SVD) technique is chosen. To apply SVD technique, the original 

matrix (permission-app matrix) is needed. For choosing the training dataset, malware 

dataset is needed to train since the system gives the knowledge that how much risk 

level has an incoming application. That kind of dataset didn’t download easily as 

malware based dataset are very restricted.  

The required dataset is obtained from https://www.kaggle.com/goorax/static-

analysis-of-android-malware-of-2017. Kaggle website describes the specific analysis 

results of malware applications by separating into four folders. These folders are 

apkMetaReport, byteCodeReport, virusTotalReport, and assestReport. apkMetaReport 

folder contains the contents of Manifest.xml files. byteCodeReport folder contains the 

contents of classes.dex. virusTotalReport folder contains the reports of virusTotal 

service. assestReport folders contains names of assests and lib contents. So, we 

choose to download apkMetaReport. That dataset contains over 4000 json files (one 

Json file for one malware application). An android app name is changed via its sha256 

hash value to be used as its file name.  
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1.2 Problem Definition 
Mobile devices are replacing desktops and laptops, as they enable the users to 

access email, Internet, GPS navigation, and the storage of critical data such as contact 

lists, passwords, calendars, and login credentials. Also, recent developments in mobile 

commerce have enabled users to perform transactions such as purchasing goods and 

applications over wireless networks, and even banking from their smart phones [2]. 

Believing that surfing the internet on mobile devices is safe, many users fail to enable 

existing security software. And applications use a lot of permissions to access the SD 

card, use the Internet and so on. The number of users is ignoring that permissions as 

they don’t understand the permission information, but this harms to our mobile 

devices. This causes unwanted things like break the security of our mobile phone or 

else this can effect on our sensitive information. Therefore, if the specific-app 

permissions risks are known, the installation of that app can be eliminated [10]. 

 

1.3 Objectives of the Thesis 
  The objectives of the thesis are as follows: 

• To develop a malware application detection system for android smart 

phone. 

• To support the user about the risk level information of application before 

installing it. 

• To know the statistical correlations of permissions using Singular Value 

Decomposition (SVD). 

 

1.4 Organization of the Thesis 
  This thesis is organized into five chapters. 

Chapter 1 includes introduction, overview of the proposed system, problem 

definition and objectives of the thesis.  

Chapter 2 describes the detail information about android mobile operating 

system and android malware including types of android malware and kinds of 

malware detection and analysis methods. 

Chapter 3 explains the proposed system methodology. 
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Chapter 4 presents design and implementation of proposed system which 

includes system flow diagram, database design, data dictionary, screen designs of the 

proposed system, empirical results.  

The last chapter, Chapter 5 includes the conclusion of the system, advantages 

and limitations of the system and future extension. 
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CHAPTER 2 

ANDROID OPERATING SYSTEM AND ANDROID 

MALWARE 

 
 Nowadays, android is the most popular mobile operating system, based on 

the Linux kernel, primarily designed for touchscreen mobile devices. Google became 

involved with the financial backing of Android Inc. in 2005, with smartphones using 

the operating system, which debuted in 2008 (HTC Dream). The operating system 

is open source, distributed under the Apache License, leading to rapid development 

by many globally. According to AppBrain, over 1.1 million Android apps exist in 

the market as of February 13, 2014, with 22 percent identified as low-quality apps. 

The architecture of the Android operating system is well published, involving 

the Linux kernel, libraries, an application framework, applications, and the Dalvik 

Virtual Machine (DVM) environment. To gain “root” on a device one must gain 

access to the core Linux kernel running an Android device. Most Android malware 

do not attempt to perform exploits to get to root, as that is not required for nefarious 

motives. Rather, apps are commonly modified to add in a hidden Trojan component 

so that the Trojan is also installed when a user installs an app. Once installed and run, 

Android malware may employ a wide variety of permissions enabled for the app to 

then send text messages, and phone and geolocation information to manage and 

intercept all types of communications and more [8]. 

 

2.1  Introduction to Android Operating System 
Android operating system versions are named after consumables starting with 

version 1.5. The version where each platform name was first provided is in 

parenthesis: Cupcake (1.5), Donut (1.6), Eclair (2.0), Froyo (2.2), Gingerbread (2.3), 

Honeycomb (3.0), Ice Cream Sandwich (4.0), Jelly Bean (4.1), and KitKat (4.4), with 

Key Lime Pie (5.0) expected in the future. There is a pattern in the naming of each 

version, can you spot it? Each version introduces new functionality and 

requirements. For example, KitKat, the most recent release, is designed to streamline 

memory usage for maximum compatibility with all devices in party by introducing  

new application programming  interface (API)  solutions, such as 
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“ActivityManager.isLowRamDevice()”, tools like meminfo for developers. Back to the teaser 

above each version of Android is named after a sequential letter in the English 

alphabet, with versions Cupcake through  KitKat representing versions C, D, E, F, 

G, H,  I, J, and K. The next major version following Key Lime Pie should start with 

the letter L and be a dessert item such as Ladyfingers, Lemon Meringue Pie, or 

Licorice [11]. 

 

2.1.1 Android Architecture 
Android is a software stack meaning that it features four main software layers 

(from top to bottom): the application layer, the framework layer, the runtime and 

native libraries layer and the kernel layer.  

The top layer features Android applications. Typical Android applications are: 

the Home application which is the first running application that displays icons to start 

other applications; the Contact application to manage the list of contact; the Phone 

application to give phone calls; and the Browser application to visit web resources. 

Users of devices running Android can install more applications on their device, 

usually by downloading them from a repository such as F-Droid1 or the official 

Google market named Play Store2. Applications are mainly written in the Java 

programming language but can also contain native code. Applications rely on the 

framework layer to communicate with the system [16].  

The framework layer is an interface written in Java between applications and 

the rest of the system. It provides facilities to retrieve information from a system 

resource (e.g. the application can retrieve GPS coordinates through the Location 

Manager) or to ask the system to call them back when there is a new event (e.g. ask 

the TelephonyManager to notify the application when there is a phone call). 

The third layer features two distinct entities: the Android runtime and the 

native libraries. 

• The Android runtime consists of the Dalvik virtual machine, which executes 

Android applications’ Dalvik bytecode3, and Android core libraries, basically 

Java classes, which applications can leverage (e.g. application can use the 

Https URL Connection class to open a secure connection to a website). Some 

libraries contain wrappers around native libraries. For instance, Java classes 

for the core library handling secure connections to websites such as Https 
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URL Connection may use the Open SSL native library depending on the 

environment’s configuration. 

• The native libraries4 provide basic building blocks that can be used by 

applications, the framework layer or core libraries. Applications can have 

native code that directly uses the native OpenGL library for fast graphic 

processing. The framework layer can use the native SQLite library to store 

data. 

The lowest layer is the Linux kernel. From upper software layers it can be 

seen as an interface to the hardware (CPU, memory,). Indeed, it is responsible for 

running programs on the CPU5 and it has a number of drivers to handle different 

hardware such as the display, the audio, and drivers to manager network 

communication. It also features a special driver for efficient Inter-Process 

Communication called the Binder driver.  

An Android application can use elements from the framework layer, core and 

native libraries as well as directly communicate with the kernel. The Android system 

implements security features to prevent applications from having access to every part 

of the system. In short, developers give a list of permissions to every application they 

write. This list specifies what the application is allowed to do on the system and has to 

be validated by the user at installation time. When an application is installed, it is 

given a User ID (UID). Every Android application can be seen as a Linux user. 

Moreover, the Android system has a list of mapping for each permission to a Group 

ID (GID). For every permission the application declared, the system adds the 

application (or more precisely the corresponding Linux user) to the corresponding 

GID. So, if an application does not have the GPS permission and wants to retrieve the 

GPS coordinates through the LocationManager or the Linux driver for the GPS, the 

Android system detects that the application is not in the GPS group and prevents it 

from accessing GPS data [11]. 

 

2.1.2 Structure of Android Application 
An Android application is a compressed zip file signed with the private key K 

of the developer. It contains the Dalvikbytecode of the application (compiled from the 

Java source code), data the application needs (pictures, sound,) and a manifest file 
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describing the application’s structure and permissions the application requires. In 

short, 

Application = Sign(Zip(DalvikBytecode;Manifest;Data);K): 

The fact that Android applications are signed with the private key of the 

developer ensures that applications can only be updated by code signed by the same 

developer and that applications signed with the same key have the possibility to share 

permissions and UID. However, it does not guarantee the authenticity of the author of 

the application since certificates can be self-signed (e.g., anyone could claim to be 

John Doe). 

Components. Android applications are made of components. There exist four kinds 

of components: activity, service, content provider and broadcast receiver. Activity 

components are used for the GraphicalUser Interface (GUI). They display graphical 

elements such as buttons, lists or pictures. Service components are used for 

computational intensive tasks or tasks that take a long time such as playing an audio 

file. Content providers are used to share data between applications. For instance, the 

list of contact is implemented as a content provider so that any application can have 

access to it (if it has the proper permission). Finally, broadcast receiver components 

receive messages from the system or other applications (e.g. an SMS has been 

received by the system). Concretely, every component is a Java class which inherits 

from a specific super class such as Activity, Service, etc.  

Communication with Intent and URI. Components of an Android application 

usually communicate using special system methods called Inter-Component 

Communication (ICC) methods. There are about forty ICC methods which a 

component can use to communicate with another component. The most used ICC 

method is startActivity(Intent). This method is used to tell the system to start a new 

activity component described by the method’s parameter. 

Intent. Components can communicate with one another using an abstract object 

called Intent. Communications can take place between components of a single 

application or between components of multiple applications. When component A 

wants to communicate with component B, it initializes an Intent and sets component 

B as the destination. This kind of communication is said to be explicit because the 

target component is explicitly specified. A communication can also be implicit in 

which case the source component initializes the Intent with the action it would like to 

perform (e.g. view a pdf document). When the component sends the Intent, the system 
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checks for components having the action in their intent filter. The selection of the 

target component can be done automatically by the system or may require user 

intervention if multiple components can handle the action. For instance, if Activity3 

sends an Intent with action "view txt" the system starts Activity2 since it is the only 

component having the "view txt" intent filter. Intents can encapsulate data in form of 

key/value pairs in objects called Bundles. Intents are used for communications 

between activities, service and broadcast receivers. 

URI. A URI, or Uniform Resource Identifier, identifies an abstract or physical 

resource. In short a URI is used to communicate with content providers. They may 

also be used to initialize Intents to target specific resource. As an example link, 

URI:content://com.android.calendar/events, it can be cut into three parts. The first 

one, content, identifies how to access the resource. The reader may already know the 

http scheme for accessing web pages through the HTTP protocol. Content means that 

access to the resource is done through a content provider. The second part, 

com.android.calendar, called the authority identifies the holder of the resource. The 

reader may be familiar with authorities such as mywebsite.com which identify a 

registered host on the Internet. In our example, the authority identifies the content 

provider called com.android.calendar which has been registered to the Android 

system. Finally, events, called the path, is the part identifying the target resource. The 

reader may be familiar with paths such as index.html identifying web page resources. 

In example, this is the database table events of the content provider. 

<manifest package="com.android.providers.calendar"> 

<application android:process="com.android.calendar"> 

<provider android:name="CalendarProvider" /> 

<service android:name="CalendarSyncAdapterService" > 

<intent-filter> 

<action android:name="SyncAdapter" /> 

</intent-filter> 

</service> 

<activity android:name="CalendarContentProvider" > 

<intent-filter> 

<action android:name="MAIN" /> 

<category android:name="UNIT_TEST" /> 

</intent-filter> 
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</activity> 

<receiver android:name="CalendarReceiver"> 

<intent-filter> 

<action android:name="BOOT_COMPLETED" /> 

</intent-filter> 

</receiver> 

</application> 

<uses-permission android:name="android.permission.INTERNET" /> 

</manifest> 

Figure 2.1 Example of Android Manifest 

The Manifest File. The manifest describes the application’s structure in terms of 

components. A component can be exported so that other applications can use it. It can 

also declare intent filters to specify to the system what kind of action or data it 

handles. The manifest also lists all the permissions that the application requests (e.g. 

INTERNET, GPS). An example of manifest is presented in Figure 2.1. It declares an 

application with one content provider, one service, one activity and one broadcast 

receiver. The service only accepts intent with action SyncAdapter, the activity intents 

with action MAIN and category UNIT_TEST and the broadcast receiver intents with 

action BOOT_COMPLETED [2].  

 

2.1.3 Android Permission 
Application vendors define a set of permissions for each application. For 

installing an application, the user has to approve as a whole all the permissions the 

application’s developer has declared in the application manifest. If all permissions are 

approved, the application is installed and receives group memberships. The group 

memberships are used to check the permissions at runtime. For instance, an 

application Foo is given two group memberships net_bt and inet when installed with 

permissions BLUETOOTH and INTERNET, respectively. In other terms, the 

standard Unix ACL is used as an implementation means for checking permissions.  

Android 2.2 defines 134 permissions in the android.Manifest$permission 

system inner class, whereas Android 4.0.1 defines 166 permissions. This gives us an 

upper-bound on the number of permissions which can be checked in the Android 

framework. 
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Android has two kinds of permissions: high level and low level permissions. 

High-level permissions are only checked at the framework level (that is, in the Java 

code of the Android SDK). Android 2.2 declares eight low-level permissions which 

are either checked in C/C++ native services (RECORD AUDIO for instance) or in the 

kernel (e.g., when creating a socket).  

In this chapter, we focus on the high-level permissions that are only checked 

in the Android Java framework [4]. 

 

2.2  Android Malware 
One of the biggest problems that Internet surfers face today on the World 

Wide Web is malware. Malware is short hand for malicious software. It is software 

developed by cyber attackers with the intention of gaining access or causing damage 

to an electronic device’s normal operation. Malware can infect personal computers, 

smartphones, tablets, servers and even equipment – basically any device with 

computing capabilities. As technology, computing and software have advanced during 

the last two decades, so has the sophistication and prevalence of malicious software. 

Malware is installed on your electronic device usually without your knowledge and it 

can enter your electronic device as a result of surfing the Internet and in a variety of 

different ways. Once it sneaks into your device, malware is capable of spying on your 

surfing habits, logging your passwords by observing your keystrokes, stealing your 

identity, reading your email, and variety of other invasive tactics [12].  

 

2.2.1 Types of Android Malware 

Mobile malware is malicious software that is specifically built to attack 

mobile phone or smartphone systems. These types of malware either install 

themselves or are installed on the device by unwitting mobile users, and then perform 

functions without user knowledge or permission. Malicious mobile apps are often 

disguised as legitimate applications. They can be distributed through the internet via 

mobile browsers, downloaded from app stores or even installed via device messaging 

functions. The insidious objectives of mobile malware range from spying to 

keylogging, from text messaging to phishing, from unwanted marketing to outright 

fraud. There is malware out there targeting every mobile platform – from Apple iOS 

to WinMobile to Blackberry – yet the vast majority of mobile malware programs 
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today target Google Android users. Some researchers report a rate of infection as high 

as 90 percent, due to Google’s open app development and distribution model. 

(a) Spyware 

 
Figure 2.2 Spyware 

Spyware on your Android will monitor record and send all your information to 

the attackers. It will steal all the information you enter on your Android device. 

Spyware will come attached with some application and it will go unnoticed until some 

security software is installed on your device. Most of the applications that you directly 

download from the Internet contain spyware. 

(b) Adware 

 
Figure 2.3 Adware 

This is the most common and all time popular android malware that a 

smartphone phone gets infected with. Having adware on the device can be a very 

frustrating thing, as you will receive continuous popups and ads on your screen. Also, 

if any of the ads is clicked then another malicious program will be downloaded or 

some unwanted application will be installed on your device. 
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(c) Trojans 

 
Figure 2.4 Trojans 

Mobile Trojans infect user devices by attaching themselves to seemingly 

harmless or legitimate programs, are installed with the app and then carry out 

malicious actions. Such programs have been known to hijack the browser, cause the 

device to automatically send unauthorized premium rate texts, or capture user login 

information from other apps such as mobile banking.  

 

(d) Viruses 

 
Figure 2.5 Viruses 

Mobile viruses can be installed on the device any number of ways and cause 

effects that range from simply annoying to highly-destructive and irreparable. 

Malicious parties can potentially use mobile viruses to root the device and gain access 

to files and flash memory. 

 

(e) Phishing Apps 
Mobile browsing of the internet is growing with smartphone and tablet 

penetration. Just as with desktop computing, fraudsters are creating mobile phishing 

sites that may look like a legitimate service but may steal user credentials or worse. 

The smaller screen of mobile devices is making malicious phishing techniques easier 
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to hide from users less sophisticated on mobile devices than PCs. Some phishing 

schemes use rogue mobile apps, programs which can be considered “trojanized”, 

disguising their true intent as a system update, marketing offer or game. Others infect 

legitimate apps with malicious code that’s only discovered by the user after installing. 

 

(f) Malware that can make Calls and Send SMS 
Another type of malware that users encounter is the malware which will make 

fake calls and send SMS to the contacts. The messages that are being sent contains 

malicious links, and which the receiver taps on the links they will also get infected by 

the malware. 

 

2.2.2 Ways of Malware Infection 

Cybercriminals looking to have a greater return focus their efforts on 

organizations and use a variety of tactics to infect the maximum number of corporate 

device with their malware variants. 

• Infected application: The most common way for a smartphone to get infected 

is by downloading an app that has a virus or malware embedded inside the app 

code. Malware operators will usually choose popular apps to repackage or 

infect, increasing the likelihood that victims will download their rogue 

version. Sometimes, however, they will come up with brand new applications. 

Infected applications are usually found on third-party app stores. When the 

app is installed, the virus or malware infects the smartphone operating system. 

• Malvertising: Malvertising is the practice of inserting malware into legitimate 

online ad networks to target a broad spectrum of end users. The ads appear to 

be perfectly normal and appear on a wide range of apps and web pages. Once 

the user clicks on the ad, his or her device is immediately infected with the 

malware. Some more aggressive malvertisements for example, take up the 

entire screen of the device while the user is browsing the web. Faced with this 

situation, many users’ first response will be to touch the screen, triggering the 

malicious download. 

• Scams: Scams are common tools used by hackers to infect mobile devices 

with malware. They rely on a user being redirected to a malicious web page, 
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either through a web redirect or pop-up screen. In more targeted cases, a link 

to the infected page is sent directly to an individual in an email or text 

message. Once the user is taken to the infected site, the code within the page 

automatically triggers the malicious software download. The website is 

usually disguised to look legitimate in order to get users to accept the file onto 

their devices. 

• E-mail attachments: It may also be possible for an e-mail to infect a 

smartphone if the user attempts to open an attachment on their smartphone and 

that attachment has a virus or malware. For example, an infected PDF 

attachment can infect a smartphone. 

• SMS or bad website: Another common tactic to infect smartphones is done 

through an SMS. For example, an unknown contact could send you a link to 

visit that sends you an infected attachment, attempts remote control, or 

attempts to phish private information from you. 

• Direct to Device: Possibly the most James Bond-esque infection method, 

direct to device, dictates that the hacker must actually touch the phone in order 

to install the malware. Usually, this involves plugging the device into a 

computer and directly downloading the malicious software onto it (also known 

as side loading) [14]. 

2.2.3 Android Malware Preventions 

The best way to protect android smartphones is to only download apps from a 

verified, reputable source. Google Play is the best place to download apps. Apps in 

online stores are checked for viruses and malware and much less likely to cause 

problems for android smartphones. 

You can also download and install antivirus and anti-malware apps for your 

android smartphone. For example, AVG AntiVirus is available for Android phones, 

and Kaspersky Safe Browser are examples of apps that help protect android 

smartphones from malware. 

Android malware is increasingly common, and that means mobile device-users 

need to be on guard when it comes to what types of apps they choose to download. 

Through malicious malware — in the form of apps — hackers can easily take hold of 
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your personal data. Users who don't take security seriously will be at a greater risk for 

downloading these dangerous apps. To prevent android malwares from invading the 

mobile devices, some important guidelines are described. 

• Guard your privacy by taking time to read the permissions the app requires. 

Think about whether they match the purpose of the app; granting the wrong 

permissions can send your sensitive data off to third parties.  

• Read the app's reviews. Check to see if there are any strange concerns or 

experiences with the app.  

• Avoid downloading apps from third-party marketplaces. That's exactly where 

hackers plant their malware-ridden apps.  

• Stay away from dodgy websites and always check if the developers are 

legitimate. If you've never heard of them, see if there have been any concerns 

about them published online.  

• Be wary of a free antivirus trial, because it could be malware in disguise that 

attacks your mobile device. Affordable Android security software is available 

from trusted vendors, and it effectively does the job of blocking malicious 

apps [14]. 

2.2.4 Android Malware Detection 
The popularity of Android mobile devices has gone up in our lives and are 

being used for handling a lot of our personal and confidential information. Hence they 

are now an ideal target for attackers. Android based smart-phone users can download 

a lot of free applications from Android Application Market/Play Store. At the same 

time, the increasing number of security threats that target mobile devices has 

emerged. In fact, malicious users and hackers are taking advantage of both the limited 

capabilities of mobile devices and the lack of standard security mechanisms to design 

mobile-specific malware that access sensitive data, steal the user’s phone credit, or 

deny access to some device functionalities. To mitigate these security threats, various 

mobile specific Intrusion Detection Systems (IDSes) have been recently proposed. 

Most of these IDSes are behavior-based, i.e. they don’t rely on a database of 

malicious code patterns, as in the case of signature-based IDSes [15]. 
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2.2.5 Android Malware Analysis 
Malware analysis is the process of determining the  purpose and functionality 

of a  given  malware  sample  such as a virus,  worm,  or  Trojan  horse.  This process  

is a  necessary  step  to  be  able  to  develop  effective  detection  techniques  for 

malicious  code.  In addition, it  is  an  important  prerequisite  for  the  development  

of  removal  tools  that  can  thoroughly delete malware from an infected machine. 

Traditionally, malware analysis has been a manual process that is tedious and time-

intensive.  Unfortunately, the  number  of  samples  that  needs  to  be  analyzed  by  

security  vendors  on  a  daily  basis  is constantly  increasing. The process of 

analyzing a given program during execution is called dynamic analysis; while static 

analysis refers to all techniques that analyze a program by inspecting it. 

 

(a) Static Malware Analysis 

Analyzing software without executing, it is called static analysis. Static 

analysis techniques can be applied on different representations of a program. If the 

source code is available, static analysis tools can help finding memory corruption 

flaws and prove the correctness of models for a given system. Static analysis tools can 

also be used on the binary representation of a program. When compiling the source 

code of a program into a binary executable, some information gets lost. This loss of 

information further complicates the task of analyzing the code.  

The process of inspecting a given binary without executing is mostly 

conducted manually. For example, if the source code is available, several interesting 

information, such as data structures, used functions and call graphs can be extracted. 

This information gets lost once the source code has been compiled into a binary 

executable and it will impede further analysis. Within the malware domain typically 

the latter is the case, since the source code of a current malware binary is typically not 

available [11].  

Various techniques are used for static malware analysis. Some of those are 

described below. 

•File fingerprinting: Beside examining obvious external features of the 

binary this includes operations on the file level such as computation of a 

cryptographic hash (e.g., md5) of the binary in order to distinguish it from others and 

to verify that it has not been modified. 
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•Extraction of hard coded strings: Software typically prints output (e.g., 

status-or error-messages), which ends up embedded in the compiled binary as 

readable text. Examining these embedded strings often allows conclusions to be 

drawn about internals of the inspected binary. 

•File format: By leveraging metadata of a given file format additional, useful 

information can be gathered. This includes the magic number on UNIX systems to 

determine the file type as well as dissecting information of the file format itself. For 

example from a Windows binary, which is typically in PE format (portable 

executable) a lot of information can be extracted, such as compilation time, imported 

and exported functions as well as strings, menus and icons. 

•AV scanning: If the examined binary is well-known malware, it is highly 

likely to be detected by one or more AV scanners. To use one or more AV scanner is 

time consuming but it becomes necessity sometimes. 

•Packer detection: Nowadays malware is mostly distributed in an obfuscated 

form e.g., encrypted or compressed. This is achieved using a packer, whereas 

arbitrary algorithms can be used for modification. After packing, the program looks 

much different from a static analysis perspective and its logic as well as other 

metadata is thus hard to recover. While there are certain unpackers such as PEiD2, 

there is accordingly no generic unpacker. This makes a major challenge of static 

malware analysis. 

•Disassembly: The major part of static analysis is typically the disassembly of 

a given binary. This is conducted utilizing tools, which are capable of reversing the 

machine code to assembly language, such as IDA Pro. Based on the reconstructed 

assembly code an analyst can then inspect the program logic and thus examine its 

intention. Usually this process is supported by debugging tools such as OllyDbg. The 

main advantage of static malware analysis is that it allows a comprehensive analysis 

of a given binary. That is, it can cover all possible execution paths of a malware 

sample. Additionally, static analysis is generally safer than dynamic analysis as the 

source code is not actually executed. However, it can be extremely time-consuming, 

cumbersome and thus requires expertise. 

Limitation of Static Malware Analysis: Generally, the source code of malware 

samples is not readily available. That reduces the applicable static analysis techniques 

for malware analysis to those that retrieve the information from the binary 
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representation of the malware. Analyzing binaries brings along intricate challenges. 

Consider, for example, that most malware attacks host executing instructions in the 

IA32 instruction set. The disassembly of such programs might result in ambiguous 

results if the binary employs self modifying code techniques. Additionally, malware 

relying on values that cannot be statically determined (e.g., current system date, 

indirect jump instructions) exacerbate the application of static analysis techniques. 

The other is that malware authors know of the limitations of static analysis methods 

and thus, will likely create malware instances that employ these techniques to thwart 

static analysis. Therefore, it is necessary to develop analysis techniques that are 

resilient to such modifications, and are able to reliably analyze malicious software [5]. 

(b) Dynamic Malware Analysis 

Executing a given malware sample within a controlled environment and 

monitoring its actions in order to analyze the malicious behavior is called dynamic 

malware analysis. Since Dynamic Malware Analysis is performed during runtime and 

malware unpacks itself, dynamic malware analysis evades the restrictions of static 

analysis (i.e., unpacking and obfuscation issues). Thereby it is easy to see the actual 

behavior of a program. Another major advantage is that it can be automated thus 

enabling analysis at a large scale basis. However, the main drawback is so-called 

dormant code: That is, unlike static analysis, dynamic analysis usually monitors only 

one execution path and thus suffers from incomplete code coverage. In addition, there 

is the danger of harming third party systems if the analysis environment is not 

properly isolated or restricted respectively. Furthermore, malware samples may alter 

their behavior or stop executing at all once they detect to be executed within a 

controlled analysis environment [11].  

Mainly two basic approaches for dynamic malware analysis can be 

distinguished: 

•Analyzing the difference between defined points: A given malware sample 

is executed for a certain period of time and afterwards the modifications made to the 

system are analyzed by comparison to the initial system state. In this approach, 

Comparison report states behavior of malware. 

•Observing runtime-behavior: In this approach, malicious activities 

launched by the malicious application are monitored during runtime using a 

specialized tool. 
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An example for the first approach is Truman (The Reusable Unknown 

Malware Analysis Net). Thereby malware is executed on a real Windows 

environment rather than within a Virtual Machine. During runtime Truman provides a 

virtual Internet for the malware to interact with. After execution the host is restarted 

and boots a Linux image, which then mounts the previously used Windows image in 

order to extract the relevant data, such as the Windows registry and a complete file 

list. Finally, the Windows environment is reset to its initial clean state. By using a 

native environment Truman is able to circumvent possible anti-debugging measures 

of malware. However, since the result is only a snapshot of the infected system, 

information related to dynamic activities such as spawned processes and temporarily 

created files are lost. Hence observing the runtime-behavior of an application is 

currently the most promising approach. It is mostly conducted utilizing sandboxing. A 

sandbox hereby refers to a controlled runtime environment which is partitioned from 

the rest of the system in order to isolate the malicious process. This partitioning is 

typically achieved using virtualization mechanisms on a certain level. While in 

principle existing tools, such as chroot could be used to deploy such a controlled 

environment several sandbox environments dedicated to malware analysis exist 

implementing specialized techniques [12]. 

 

2.2.6 Symptoms of Malware Compromised Devices 

Smartphone users are beginning to understand how important it is to protect their 

devices so malware can’t be installed on them. However, many users are unaware 

of what measures they can take to identify malicious activity on their devices. 

Nonetheless, eventually the malicious activity will have to kick into action, and that’s 

when you can pay attention to certain signs to detect illegitimate activity. 

• Battery Life is Much Shorter: A hacked smartphone will have a much 

shorter battery life. If your phone is suddenly dying after a few short hours, it 

could be because spyware or another type of malware is running in the 

background. 

• Android is Performing Poorly: Your phone may be performing poorly due 

to a lack of memory, but it could also be due to malware running in the 

background of your phone. If your phone is suddenly lagging behind, freezing, 
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refusing to load certain apps or web pages, or overheating, there may be 

malware on your phone. 

• Data Usage Has Increased: If your phone bill shows a serious spike in data 

usage and other unusual charges — such as calls and texts to international 

numbers — then a hacker has gained access to your device. Although you may 

not notice this until your phone bill arrives, you can also check the data usage 

for each app on your phone. If one app — particularly an app you recently 

downloaded — is using much more data than it should be, then the app is 

likely malicious.  

• Adware and Pop-Ups Have Appeared: This is a more obvious sign of a 

hacked smartphone. If pop-ups and advertisements are now appearing on your 

device, then your phone is surely infected. 

• Android is Sending Unusual Messages: If friends, family, or acquaintances 

say that they receive a strange text, email, or Facebook message from you, 

then your phone and accounts have likely been hacked. If you’ve started to 

receive a lot of strange phone messages recently, this could also be a sign that 

a hacker has compromised your phone. 

• Websites appear somewhat different than before: If someone has installed 

malware that is "proxying" on your device--that is, sitting between your 

browser and the internet and relaying the communications between them 

(while reading all of the contents of the communications and, perhaps, 

inserting various instructions of its own)--it might affect how some sites 

display. 

• Some apps stop working properly: If apps that used to work properly 

suddenly stop working, that may also be a sign of proxying or other malware 

interfering with the apps' functionality. 

• Cell-phone bill shows unexpected charges: Criminals can exploit an infected 

device to make expensive overseas phone calls on behalf of a remote party 

proxying through your device, can send SMS messages to international 

numbers, or ring up charges in other ways. 
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• Data breaches and/or leaks: Of course, if you have experienced some data 

leak you should always check to determine the source of the problem--and the 

process of checking obviously includes examining your smartphone. 

• The Internet connects on its own: Viruses and other malware use your 

phone’s data to spread its message. If you see that your phone is mysteriously 

switching your Wi-Fi and data connections on without your intervention, it 

could be due to malware. These programs can override your preferences and 

connect to the internet on their own. If you see unusual internet activity, scan 

your phone for viruses and clean using an anti-virus program [8]. 
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CHAPTER 3 

THE PROPOSED SYSTEM METHODOLOGY 
 

This chapter provides a description of, the much required, theoretical 

foundation for our work and the general framework that we developed to carry out our 

experiments. 

 

3.1 Malware Detection Systems 
The popularity of Android mobile devices has gone up in our lives and is 

being used for handling a lot of our personal and confidential information. Hence they 

are now an ideal target for attackers. Android based smart-phone users can download 

a lot of free applications from Android Application Market/Play Store. At the same 

time, the increasing number of security threats that target mobile devices has 

emerged. In fact, malicious users and hackers are taking advantage of both the limited 

capabilities of mobile devices and the lack of standard security mechanisms to design 

mobile-specific malware that access sensitive data, steal the user’s phone credit, or 

deny access to some device functionalities. To mitigate these security threats, various 

mobile specific Intrusion Detection Systems (IDSes) have been recently proposed. 

Most of these IDSes are behavior-based, i.e. they don’t rely on a database of 

malicious code patterns, as in the case of signature-based IDSes [13]. 

Malware Detection: Malware detection is a field of study that deals with the 

analysis, detection and containment of malware. The greatest challenges in security 

tasks that are still battling the exploration of mobile communication devices, 

computer and network infrastructures, and web technology are Malware attacks, 

Malware detection and Malware analysis [9]. 

There are three different types of malware detection techniques. 

1. Attack or Invasion Detection: Tries to detect unauthorized access by 

outsiders. 

2. Signature-based Detection (Misuse Detection): Tries to detect misuse by 

insiders. 

3. Behavior-based Detection (Anomaly Detection): Detects the patterns in a 

given dataset that do not conform to an established normal behavior. 
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3.2 Statistical Technique: Singular Value Decomposition (SVD)  
Singular value decomposition (SVD) can be looked at from three mutually 

compatible points of view. On the one hand, we can see it as a method for 

transforming correlated variables into a set of uncorrelated ones that better expose the 

various relationships among the original data items. At the same time, SVD is a 

method for identifying and ordering the dimensions along which data points exhibit 

the most variation. This ties in to the third way of viewing SVD, which is that once 

we have identified where the most variation is, it is possible to find the best 

approximation of the original data points using fewer dimensions. Hence, SVD can be 

seen as a method for data reduction [6]. 

As an illustration of these ideas, consider the 2-dimensional data points. The 

regression line running through them shows the best approximation of the original 

data with a 1-dimensional object (a line). It is the best approximation in the sense that 

it is the line that minimizes the distance between each original point and the line. If 

we drew a perpendicular line from each point to the regression line, and took the 

intersection of those lines as the approximation of the original data point, we would 

have a reduced representation of the original data that captures as much of the original 

variation as possible. Notice that there is a second regression line, perpendicular to the 

first.  

This line captures as much of the variation as possible along the second 

dimension of the original data set. It does a poorer job of approximating the original 

data because it corresponds to a dimension exhibiting less variation to begin with. It is 

possible to use these regression lines to generate a set of uncorrelated data points that 

will show sub groupings in the original data not necessarily visible at first glance. 

These are the basic ideas behind SVD: taking a high dimensional, highly 

variable set of data points and reducing it to a lower dimensional space that exposes 

the substructure of the original data more clearly and orders it from most variation to 

the least. What makes SVD practical for NLP applications is that you can simply 

ignore variation below a particular threshold to massively reduce your data but be 

assured that the main relationships of interest have been preserved [2]. 

  

24 
 



 
 

Full Singular Value Decomposition: SVD is based on a theorem from linear algebra 

which says that a rectangular matrix A can be broken down into the product of three 

matrices - an orthogonal matrix U, a diagonal matrix S, and the transpose of an 

orthogonal matrix V.  

 

Reduced Singular Value Decomposition: Reduced singular value decomposition is 

the mathematical technique underlying a type of document retrieval and word 

similarity method variously called Latent Semantic Indexing or Latent Semantic 

Analysis. The insight underlying the use of SVD for these tasks is that it takes the 

original data, usually consisting of some variant of a word x document matrix, and 

breaks it down into linearly independent components. These components are in some 

sense an abstraction away from the noisy correlations found in the original data to sets 

of values that best approximate the underlying structure of the dataset along each 

dimension independently. Because the majority of those components is very small, 

they can be ignored, resulting in an approximation of the data that contains 

substantially fewer dimensions than the original. SVD has the added benefit that in 

the process of dimensionality reduction, the representation of items that share 

substructure become more similar to each other, and items that were dissimilar to 

begin with may become more dissimilar as well. In practical terms, this means that 

documents about a particular topic become more similar even if the exact same words 

don't appear in all of them. As we have already seen, SVD starts with a matrix, so we 

will take word x document matrix as the starting point [10]. 

 

3.2.1 Vector Terminology 
The proposed methodology is based on statistical and matric method. So, 

some of the vector terminology is mentioned as follows. 

(a) Vector Length 

The length of a vector is found by squaring each component, adding them all 

together, and taking the square root of the sum. If 𝑣⃗𝑣 is a vector, its length is denoted 

by |𝑣⃗𝑣|. More concisely, 

|v�⃗ | = �∑ xi2n
i=1                (3.1) 

For example, if 𝑣⃗𝑣 = [4, 11, 8, 10], then 

|v�⃗ | = �42 + 112 + 82 + 102 = √301 = 17.35 
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(b) Vector Addition 

 Adding two vectors means adding each component in ~v1 to the component in 

the corresponding position in ~v2 to get a new vector. For example 
[3, 2, 1,−2] + [2,−1, 4, 1] = [(3 + 2), (2 − 1), (1 + 4), (−2 + 1)] = [5, 1, 5,−1] 

More generally, if A = [a1, a2, … an] and B = [b1, b2, … bn], then A + B =  [a1 + b1, a2 +

b2, … . . an + bn]. 

 

(c) Scalar Multiplication 

Multiplying a scalar (real number) times a vector means multiplying every 

component by that real number to yield a new vector. For instance, if v�⃗ = [3, 6, 8, 4], 

then 1.5 ∗ [3, 6,8, 4] = [4.5, 9, 12, 6]. More generally, scalar multiplication means if d is 

a real number and |𝑣⃗𝑣| is a vector [𝑣𝑣1,𝑣𝑣2, … 𝑣𝑣3], then 

𝑑 ∗ 𝑣⃗𝑣 = �𝑑𝑣𝑣1,𝑑𝑣𝑣2, …𝑑𝑣𝑣𝑛               (3.2) 

 

(d) Inner Product 

The inner product of two vectors also called the dot product or scalar product 

denies multiplication of vectors. It is found by multiplying each component in 𝑣𝑣1����⃗  by 

the component in 𝑣𝑣2����⃗ in the same position and adding them all together to yield a scalar 

value. The inner product is only defined for vectors of the same dimension. The inner 

product of two vectors is denoted (𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ ) or 𝑣𝑣2����⃗  . 𝑣𝑣2����⃗  (the dot product). Thus,  

(𝑥⃗𝑥, 𝑦⃗) =  𝑥⃗𝑥 ∗  𝑦⃗ =  ∑ 𝑥𝑥𝑖𝑦𝑖𝑛
𝑖=1              (3.3)

  

For example, if 𝑥⃗𝑥 =  [1, 6, 7, 4] and 𝑦⃗ =  [3, 2, 8, 3], then 

𝑥⃗𝑥 ∗  𝑦⃗ =  1(3) +  6(2) +  7(8) +  4(3) = 83 

 

(e) Orthogonality 

 Two vectors are orthogonal to each other if their inner product equals zero. In 

two dimensional space this is equivalent to saying that the vectors are perpendicular, 

or that the only angle between them is a 90 degree angle. For example, the vectors [2, 

1, -2, 4] and [3, -6, 4, 2] are orthogonal because  

[2, 1, -2, 4] * [3, -6, 4, 2] = 2(3) + 1(-6) - 2(4) + 4(2) = 0 
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(f) Normal Vector 

A normal vector (or unit vector) is a vector of length 1. Any vector with an 

initial length >0 can be normalized by dividing each component in it by the vector's 

length. For example, if 𝑣⃗𝑣 = [2, 4, 1, 2], then  

|𝑣⃗𝑣| =  �22 +  42 +  12 +  22 =  √25 =  5 

Then 𝑣⃗𝑣 = [2/5, 4/5, 1/5, 1/5] is a normal vector because 

|𝑣⃗𝑣| =  �(
2
5

)2 +  (
4
5

)2 +  (
1
5

)2 +  (
1
5

)2 =  �25/25 =  1 

 

3.2.2 Matrix Terminology 
Matrix Terminology is mentioned as follows. 

(a) Square Matrix 

A matrix is said to be square if it has the same number of rows as columns. To 

designate the size of a square matrix with n rows and columns, it is called n-square. 

For example, thematrix below is 3-square. 

𝐴𝐴 =  �
1 2 3
4 5 6
7 8 9

� 

 

(b) Transpose Matrix 

The transpose of a matrix is created by converting its rows into columns; that 

is, row 1 becomes column 1, row 2 becomes column 2, etc. The transpose of a matrix 

is indicated with a superscriptedT, e.g. the transpose of matrix A is AT. For example, if 

𝐴𝐴 =  �1 2 3
4 5 6� 

Then its transpose is 

AT = �
1 4
2 5
3 6

� 

(c) Matrix Multiplication 

It is possible to multiply two matrices only when the second matrix has the 

same number of rows as the first matrix has columns. The resulting matrix has as 

many rows as the first matrix and as many columns as the second matrix. In other 
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words, if A is a m x n matrix and B is a n x s matrix, then the product AB is an m x s 

matrix. 

The coordinates of AB are determined by taking the inner product of each row 

of A and each column in B. That is, if A1, … ,Am are the row vectors of matrix A, 

and B1, … , Bs are the column vectors of B, then abik of AB equals Ai x Bk. The 

sample calculation of matrix multiplication is described as follows. 

A =  �2 1 4
1 5 2�  B =  �

3 2
−1 4
1 2

�  AB =  �2 1 4
1 5 2� �

3 2
−1 4
1 2

� =  �9 16
0 26� 

ab11 =  [2 1 4] �
3
−1
1
� = 2(3) +  1(−1) +  4(1) = 9 

ab12 =  [2 1 4] �
3
−1
1
� = 2(4) +  1(4) +  4(2) =  16 

ab21 =  [1 5 2] �
2
4
2
� = 1(3) +  5(−1) +  2(1) = 0 

ab22 =  [1 5 2] �
2
4
2
� = 1(2) +  5(4) +  2(2) = 26 

 

(d) Identity Matrix 

The identity matrix is a square matrix with entries on the diagonal equal to 1 

and all other entries equal zero. The diagonal is all the entries aij where i = j, i.e., a11, 

a12, …, amm. The n-square identity matrix is denoted variously as In*n, In, or simply I. 

The identity matrix behaves like the number 1 in ordinary multiplication, which mean 

AI = A, as the example below shows. 

𝐴𝐴 =  �2 4 6
1 3 5�  𝐼 =  �

1 0 0
0 1 0
0 0 1

�  𝐴𝐴𝐼 =  �2 4 6
1 3 5� �

1 0 0
0 1 0
0 0 1

� =  

𝑎𝑖11 =  [2 4 6] �
1
0
0
� = 2(1) +  0(4) +  0(6) = 2 

𝑎𝑖12 =  [2 4 6] �
0
1
0
� = 2(0) +  4(1) +  6(0) =  4 

𝑎𝑖13 =  [2 4 6] �
0
0
1
� = 2(0) +  4(0) +  6(1) =  6 

𝑎𝑖21 =  [1 3 5] �
1
0
0
� = 1(1) +  3(0) +  5(0) =  1 
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𝑎𝑖22 =  [1 3 5] �
0
1
0
� = 1(0) +  3(1) +  5(0) = 3 

𝑎𝑖23 =  [1 3 5] �
0
0
1
� = 1(0) +  3(0) +  5(1) = 5 

=  �2 4 6
1 3 5� 

 

(e) Orthogonal Matrix 

A matrix A is orthogonal if AAT = ATA = I. For example,  

𝐴𝐴 =  �
1 0 0
0 3 5⁄ −4 5⁄
0 4 5⁄ 3 5⁄

� 

is orthogonal because 

𝐴𝐴𝑇𝐴𝐴 =  �
1 0 0
0 3 5⁄ −4 5⁄
0 4 5⁄ 3 5⁄

� �
1 0 0
0 3 5⁄ −4 5⁄
0 4 5⁄ 3 5⁄

� =  �
1 0 0
0 1 0
0 0 1

� 

 

(f) Eigenvectors and Eigenvalues 

An eigenvector is a nonzero vector that satisfies the equation 

𝐴𝐴𝑣⃗𝑣 =  𝜆𝜆𝑣⃗𝑣              (3.4) 

where A is a square matrix, ¸ λ is a scalar, and 𝑣⃗𝑣 is the eigenvector. λ is called an 

eigenvalue. Eigenvalues and eigenvectors are also known as, respectively, 

characteristic roots and characteristic vectors, or latent roots and latent vectors. 

You can find eigenvalues and eigenvectors by treating a matrix as a system of linear 

equations and solving for the values of the variables that make up the components of 

the eigenvector. For example, finding the eigenvalues and corresponding eigenvectors 

of the matrix 

𝐴𝐴 =  �2 1
1 2� 

means applying the above formula to get  

𝐴𝐴𝑣⃗𝑣 =  𝜆𝜆𝑣⃗𝑣 =  �2 1
1 2� �

𝑥𝑥1
𝑥𝑥2� =  𝜆𝜆 �

𝑥𝑥1
𝑥𝑥2� 

in order to solve for λ, x1 and x2. This statement is equivalent to the system of 

equations  

2x1 + x2 = λx1 

x1 + 2x2 = λx2 
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which can be rearranged as  

(2 – λ) x1 + x2 = 0 

x1 + (2 – λ) 2x2 = 0 

A necessary an sufficient condition for this system to have a nonzero vector [x1, x2] is 

that the determinant of the coefficient matrix 

�
(2 − 𝜆𝜆) 1

1 (2 − 𝜆𝜆)� 

be equal to zero. Accordingly,  

�
(2 − 𝜆𝜆) 1

1 (2 − 𝜆𝜆)� = 0 

(2 –λ) (2-λ) – 1*1 = 0 

λ2 - 4λ + 3 = 0 

(λ – 3) (λ – 1) = 0 

There are two values of  λ that satisfy the last equation; thus there are two eigenvalues 

of the original matrix A and there are λ1 = 3, λ2 = 1. 

 We can find eigenvalues which correspond to these eigenvalues by plugging λ 

back in to the equations above and solving for x1 andx2. To find an eigenvetor 

corresponding to λ = 3, start with  

(2 – λ) x1 + x2 = 0 

and substitute to get 

(2 – 3) x1 + x2 = 0 

Which reduces and rearranges to  

x1 = x2 

There is an infinite number of values for x1 which satisfy this equation; the only 

restriction is that not all the components in an eigenvector can equal zero. So if x1 = 

1, then x2 = 1 and an eigenvector corresponding to λ = 3 is [1, 1].  

(2 – 1) x1 + x2 = 0 

x1 = -x2 

So an eigenvector for λ = 1 is [1, -1]. 
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3.3 Similarity Measure 
Another key factor in the success of the proposed system is the similarity 

measure between testApp and malware apps. There are three simple and well known 

similarity measures to calculate the similarity. They are the Dice, Jaccard and Cosine 

Coefficients. Among these three similarity measures, the system is used Jaccard 

similarity to measure the related permissions patterns in testApp and set of trained 

malware apps. 

Jaccard Similarity Coefficient: The Jaccard index, also known as the Jaccard 

similarity coefficient (by Paul Jaccard), is a statistic used for comparing the similarity 

and diversity of sample sets. The Jaccard coefficient measures similarity between 

sample sets, and is defined as the size of the intersection divided by the size of the 

union of the sample sets:  

Let D = {D1, D2,……Dn} be the collection of N malware apps. Each 

malware app Di can be represented by a corresponding set Si such that Si is a set of 

all the permissions contained in Di. Let us denote that set by Di such that 

Di={S1,S2,……….. Sn} [1].  

Some attributes are present in just a few objects of a data set. As they assume 

zero values in most of the cases, they are called asymmetric. Jaccard Similarity 

Coefficient measure is used to handle asymmetric binary attributes as only non-zero 

values are relevant for the calculation [7]. 

 

∑ PeriApp
|v|
i=1 ∗PeriqueryApp

∑ �PeriApp�
2|v|

i=1 +∑ �PeriqueryApp�
2|v|

i=1 − ∑ PeriApp
|v|
i=1 ∗PeriqueryApp

                (3.5) 

 

Where: 𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝑝𝑝 = permissions of trained application 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑞𝑢𝑒𝑟𝑦𝐴𝑝𝑝 = permissions of user chosen application 
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3.4 Measuring System Effectiveness 
The proposed system uses the statistical method SVD and Jaccard Coefficient 

similarity. The system can be used to detect whether the incoming app should be 

installed or not on Android Smartphone. 
Firstly, the user wants to install a specific app. That is passed to the pre-

processing stages. In database, all significant malware apps are already pre-processing 

and calculated the malware related patterns. The input app is compared to this 

malware pattern. Finally, the system displays risky level according to the similarity 

values.  

Accuracy: Accuracy of a system is evaluated on how well the system is able to 

distinguish anomalous app or not. 

 

    Accuracy = tp+tn
tp+fp+tn+fn

                         (3.6) 

 

Where:  

tp (true positive) is an outcome where the system correctly predicts the 

malware app. 

tn (true negative) is an outcome where the system correctly predicts the 

godware app.  

fp (false positive) is an outcome where the system incorrectly predicts the 

malware app. 

fn (false negative) is an outcome where the system incorrectly predicts the 

goodware app. 
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CHAPTER 4 

THE PROPOSED SYSTEM IMPLEMENTATION 
 

Since the proposed system is implemented by using vector space model, 

preprocessing stages and indexing are needed. Therefore, query and documents can 

easily and quickly be compared. The result documents are shown in decreasing order 

of similarity to the query term. The system uses vector space information retrieval 

model and Jaccard Coefficient for similarity ranking. As the non-function 

requirements, a computer which has at least Intel@ Core i5-2410M, 640 GB HDD 

and 8 GB DDR3 Memory are required to implement our proposed system. As the 

functional requirements, we need to install Android Studio, an oreo-versioned mobile 

phone to run and test our proposed system. 
 

4.1 Brief Overview of the Proposed System 
The proposed system is a malicious application detection system based on 

permission information from Manifest file. The system uses static analysis for 

malware detection which means that applications are not executed or analyzed at run 

time. The proposed system comprises into two groups as follows. 

For training phase, 

1. Extract the permissions from JSON files of ApkMetaReport folder for static 

analysis of android malware 2017.(https://www.kaggle.com/goorax/static-analysis-of-

android-malware-of-2017 ) 

2. Preprocess the extracted permissions such as redundant permissions removal.  

3. Perform statistical SVD approach. 

For testing phase,  

1. Extract the permissions from the tested App. 

2. Find the permission-correlation pattern (T) of it. 

3. Find the similarity value between trained-permission patterns and T. 
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4.2 Training Phase of the Proposed System 

4.2.1 Data Collection 
To implement the proposed system, the first thing is to collect the information 

about the risky apps as much as. According to the literature, there are so many ways 

to analyze different kinds of apps such as by analyzing signature features, behavior 

features or anomaly features and so on. Among them, the proposed system analyzes 

the apps based on permissions. Because permission is the main gate to allow the 

application (which operations must be done). So, this is the fact to learn about 

permissions of android application.  

There are a lot of permissions that are declared by Google. Moreover, there 

are also customized permissions. The specific permission has its own task such as 

reading contacts, or sending sms or getting GPS, etc. Some of them are dangerous. 

Some of them are normal. Some of them are nothing meaning etc. But when 

analyzing permissions, it isn't enough to know which permissions are dangerous and 

which permissions are normal. One application can use as much as permissions 

according to the developer.  And, it cannot be concluded that an application has high 

risk by seeing one of dangerous permissions. 

So, it is needed to analyze which correlation patterns of permissions are 

usually involved in high risk application. Singular Value Decomposition (SVD) 

technique is applied to get the correlation patterns of permissions. To apply SVD 

technique, the original matrix (permission-app matrix) is needed to get. For choosing 

the training dataset, malware dataset is needed to train since the propose of the system 

is to give the knowledge that how much risk level has an incoming application. 

Malware dataset didn’t download easily as malware based dataset are very restricted.  

The required dataset is obtained from https://www.kaggle.com/goorax/static-

analysis-of-android-malware-of-2017. Kaggle website describes the specific analysis 

results of malware applications by separating into four folders. These folders are 

apkMetaReport, byteCodeReport, virusTotalReport, and assestReport. apkMetaReport 

folder contains the contents of Manifest.xml files. byteCodeReport folder contains the 

contents of classes.dex. virusTotalReport folder contains the reports of virusTotal 

service. assestReport folders contains names of assests and lib contents. So, 

apkMetaReport folder is downloaded. That dataset contains over 4000 json files (one 
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Json file for one malware application). An android app name is identified by its 

sha256 hash sum, which is used by file name. 

 

4.2.2 Dataset Description 
The dataset is obtained from https://www.kaggle.com/goorax/static-analysis-

of-android-malware-of-2017. For static analysis of android malware 2017, this dataset 

contains 4000 JSON files. The JSON files contains the method names. An Android 

app name is uniquely identified by its sha256 hash sum, which is used as the file 

name. The following folders store specific analysis results: 

1. ApkMetaReport: Contents of the AndroidManifest.xml. 

2. ByteCodeReport: Contents of the classes.dex. 

3. VirusTotalReport: Report of the Virustotal service. 

4. AssetReport: Names of assets and lib contents. 

Among them, the proposed system uses ApkMetaReport file. The analyzed 

malware was originated at Technical University Berlin. It is a part of the Virusshare 

repository. The static analysis extracted information from the AndroidManifest.xml. 

 

4.2.3 Preprocessing 

We need to preprocess the downloaded dataset to be ready to use as the trained 

dataset in our proposed system. There are two steps for preprocessing phase: 

tokenization and removing Duplicate Permissions. 

Tokenization: Computers do not understand the structure of a natural language 

document and cannot automatically recognize words and sentences. So, humans must 

program the computer to identify what constitutes and individual or distinct word 

referred to as a token. Such a program is commonly called a tokenizer or parser or 

lexer. Tokenizing is the process of breaking of stream of text up into words, phrases, 

symbols or other meaningful elements.  

To store the permissions for each application, we extract the required 

permissions from the json dataset by tokenization. Then we build original matrix 

(permission-app matrix). 
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Removing Duplicate Permissions: Some permission is frequently occurring and that 

do not represent any content of the application. Duplicate permissions are list of 

permissions that the developer includes them unintentionally. So, in this phase, 

duplicate permissions are removed before building the original malware vector. 

 

4.2.4 Implementation Steps for the Training Phase 

 The implementation steps for the training phase are as follows. 

Step 1 Place JSON files under ‘download’ folder of emulator’s internal storage. 

Step 2 For each JSON file, 

Extract Permissions and do Preprocessing phase 

Create a Permission_App relation (perID and appID) 

Step 3  Generate the Boolean permission_app matrix and save it to database 

Step 4 Compute S, V, U metrics (using Singular Value Decomposition) and  

reduce the metrics with k dimension (suppose: k=4). 

Step 5 Save S-1 and U metrics to the corresponding data files 

Step 6 Transpose V (malApp vector) and save it to the corresponding data file 

 

 
Figure 4.1 Process Flow Diagram for Training Phase 
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4.3 Testing Phase of the Proposed System 

Testing phase contains two sub-phases. Figure 4.2 (a) is about finding the 

permission-correlation pattern of the user chosen application and the steps are as 

follow. 

Step 1 Accept a test app. 

Get Permission Values of <uses-permission>  ElementfromAndroid’s  

Manifest.xml (by getRequestedPermissionList() method)  

Step 2 Generate testApp vector (q).                                   

Step 3 Calculate queryApp vector by computing qT U S-1 

 
Figure 4.2 (a) Process Flow Diagram for creating queryApp Vector 

 

The figure 4.2 (b) is about giving information to the user for the user chosen 

application’s risk level. The steps of creating queryApp vector are as follows. 

Step 1 Fetch VT from corresponding data file. 

Step 2 Compute the similarity values between queryApp vector and malApp vectors 

(VT ) and save them to temporary similarity result array. 

37 
 



Step 3 Choose the highest similarity value (h) from the similarity result array. 

Step 4 If h is greater than or equal to maximum threshold value (0.8000), show the 

message “The application has high risk permissions”. 

Step 5 Else if h is greater than or equal to minimum threshold value (0.5847), show 

the message “The application has medium risky permissions”. Otherwise, 

show the message “The application has low risk permissions”. 

 

Figure 4.2 (b) Process Flow Diagram for Finding Risk Level 
 

4.4 Database Design of the Proposed System 

Our proposed system needs to use the following three tables.  

1. PermissionAppMatrix table, 

2. ApplicationData table and  

3. PermissionData table 
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PermissionAppMatrix table  stores the relationship of the permissions and 

applications as element field (1 means exist, and 0 means not exist). That table has 

composite primary key to join with both of PermissionData table and ApplicationData 

table. ApplicationData table is used to store the general information of the 

applications with appName for application’s name and appIcon for application’s icon. 

PermissionData table is used to store the permission name (such as 

android.permission.INTERNET).  

 

Figure 4.3 Database Design of the Proposed System 

 And the resulted matric are needed to save as files after applying Singular 

Value Decomposition (SVD) method to use later in calculation of testApp vector. 

4.5 Analysis and Empirical Result 

There is over 4000 malware dataset as described in Section 4.2. But the 

system cannot be trained with all of that according to phone storage and emulator 

performance. Firstly, the proposed system is trained with data beginning from 50 

dataset by adding 50 JSON files again and again to the existing dataset. The emulator 

was hung at trained dataset 200 on 4G RAM. So, the proposed system is trained 

dataset beginning from 250 dataset on a laptop which has 8G RAM. It took a lot of 

time to train that amount of dataset. According to emulator’s performance and mobile 

phone storage, 300 dataset is more suitable on the current situation. 

At that time, there was another problem that is which 300 dataset will be 

trained among these 4000 malware apps. So, 4000 dataset was separated by 300. And 
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the proposed system is trained with different 300 datasets to know which dataset has 

the more features of current environment malware apps by testing 95 malware apps. 

According to the following Figure 4.5, D4 dataset includes the more features of the 

current environment malware apps. So, D4 dataset is chosen to train on the proposed 

system. 

 
Figure 4.4 Accuracy Comparison of Different Trained Dataset 

 

In figure 4.4, D1, D2, D3, D4 and D5 are different Malware Datasets 

contained 300 JSON files from ApkMetaReport Malware dataset. The system is 

trained with all of 300 separated dataset of 4000 malware apps. But at that figure 4.4, 

only the appearance datasets are highlighted. 

After getting the best trained dataset, we have to found out which k value will 

be the best on our trained data according to SVD method. So, we analyze different k 

value on our trained dataset. 

According to the figure 4.5, k=4 is the best value of the others. This figure 

shows the overall accuracy of the proposed system at different k value. But only k=2 

to k=5 are highlighted among a lot of different k value.   
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Figure 4.5 Accuracy Comparison of Different k value for Malware Detection 

 

In figure 4.6, the correctness of malware is 100% at k=2. But the correctness 

of goodware is too low. At k=3, also like k=2. At k=4, the correctness of malware 

decreases a little, but the correctness of goodware is significantly high. So, the 

accuracy of the system also increases significantly than others. At later k value, the 

correctness of malware is lower. 

 
Figure 4.6 Accuracy Comparison of Different k value for Malware and 

Goodware Detection 
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Finally, the proposed system is implemented on trained dataset (300 JSON 

files) which has the most suitable malware apps of the current environment with k=4 

according to our analysis of figure (4.7).  

 

No: of Test Data TP TN FP FN Acccuracy 
120 83 19 5 13 85% 

 

Table 4.1 Accuracy for the Proposed System 

And the final accuracy is shown in table 4.1. The accuracy of proposed system 

is 85% on the tested data 120 including malware and goodware. 

 

4.4 Screen Transactions of the Proposed System 

 Figure 4.7 shows the screen for retrieving original permission-app matrix. On 

the other hand, that screen design shows the relationships between trained malware 

applications and permissions. 

 

Figure 4.7 Screen Design for Retrieving Original permission-app Matrix 
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Figure 4.8 Screen Design for Retrieving Singular Value Matrix 

Figure 4.8 describes the screen for retrieving singular value matrix. That 

matrix is the concept matrix of eigenvalue matrix and U matrix which are gotten after 

applying Singular Value Decomposition (SVD) method. 

Figure 4.9 mentions the screen for retrieving eigenvalue matrix. That matrix is 

the relationship of trained malware applications and the concept matrix (singular 

value matrix) that are gotten after applying Singular Value Decomposition (SVD). 

Figure 4.10 shows the screen for retrieving U matrix. That matrix is the 

relationship of permission of each trained malware application and the concept matrix 

(singular value matrix) that are gotten after applying Singular Value Decomposition 

(SVD). 
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Figure 4.9 Screen Design for Retrieving Eigen Value Matrix          

 

Figure 4.10 Screen Design for Retrieving U Matrix 
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Figure 4.11 (a+b) Screen Design for Choosing Application to detect 

 

Figure 4.12 Screen Design for showing permission of chosen app 
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Figure 4.11 explains the testing screen design for choosing application to 

detect. Users need to browse an apk file under Download folder before installing it. 

Figure 4.12 shows the screen after browsing the user chosen application. That 

screen shows the permissions which are used in the user chosen application. 

 

Figure 4.13 Screen Design for showing the similarity result when pressing the 

analyze risk level button 

Figure 4.13 mentions the screen for retrieving the message about the risk level 

of user chosen application. User can know the risk level of the chosen application 

before installing it by using our proposed system. 
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CHAPTER 5 

CONCLUSION 
 

 Focus of attackers and malware writers has changed to mobile devices due to 

the increased adoption of mobile devices for business and personal purposes and 

comparatively lesser security controls. Therefore, App stores are common targets for 

attackers to distribute malware and malicious apps. The system proposes to detect the 

risk level for anomalous Android applications. The malware dataset is identified using 

Singular Value Decomposition (SVD) based approach where a permission-malapp 

matrix needs to be developed and then query-app can be detected from the set of risky 

permissions. However, the growing amount and diversity of Android malware have 

significantly weakened the effectiveness of the conventional defense mechanisms, and 

thus, Android platform often remains unprotected from new and unknown malware 

[9]. 

 The proposed system suggests that the implementation is well suited by 

finding Jaccard Similarity Values between existing malwares and the user query apps. 

As the conclusion, the Jaccard Similarity measures are well suited for mediate amount 

of data set and can effectively be helpful in finding similar values between user query 

apps and malwares. So, the system enables users to search similar risky apps as 

efficiently and as fast as possible. Therefore, the system can save time in finding the 

risky apps even the users didn’t know which apps are closely related and can access 

the system effectively without an internet connection. 

 

5.1 Advantages of the System 
 In the malware detection system, the nature of malware permissions’ 

signatures is important. The statistical method, Singular Value Decomposition (SVD) 

can find the correlation patterns of malware permissions’ signatures involved in most 

malware applications. Therefore, the proposed system methodology is effective to 

detect android malwares. Jaccard Coefficient is more effective to calculate the 

similarity on the data objects that have binary attributes. And the proposed system’s 

trained dataset uses binary attributes for the relation of permission and application. So, 

finding the similarity value between the permissions of user chosen application and 

each trained application by using Jaccard Coefficient makes the system more effective. 
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And the system leads to know the permission risk level of user chosen application 

even if user doesn’t know the permissions in details. The system is very effective for 

permission only based detection as the used method is computationally efficient in 

finding the correlation patterns of malware’s permission nature. 

 

5.2 Limitations of the System 

 There are some limitations in the proposed system. The system cannot 

grantee advanced obfuscation techniques such as polymorphic and metamorphic 

malware. Alternatively, it is not significant at detecting the disguised malware as the 

goodware since the disguised malware may use many goodware permissions as much 

as they can.  

 

5.3 Further Extension 
There are a number of directions for further extension. The importance of 

mobile phones in our everyday life and many activities is undeniably unending. 

Therefore, this system could also be implemented on not only android OS but also 

IOS. Moreover, the proposed system should be implemented by considering 

additional features (signatures) to improve the capabilities and efficiency. On the 

other hand, malware classification system can be extended in addition to malware 

detection system by using specific classification method. 
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APPENDIX 

Sample Calculation for the Proposed System 
App1  App2  App3 testApp 

Access_Network_State  1  1  1  1 

Access_Wifi_State   1  1  1  1 

Internet    1  1  1  1 

Read_Phone_State   1  1  1  1 

Write_External_Storage  1  1  1  1 

Mount_Unmount_Filesystems 1  1  0  0 

Read_External_Storage  1  0  0  1 

Install_Shortcut   1  1  1  0 

Uninstall_Shortcut   1  0  0  0 

Read_Settings    1  1  0  0 

Receive_Boot_Completed  1  0  0  1 

Get_Tasks    1  0  1  0 

System_Alert_Window  1  0  1  0 

Wake_Lock    1  0  1  1 

Get_Accounts    1  0  0  0 

Raised_Thread_Priority  0  1  0  0 

Write_Secure_Settings  0  1  0  0 

Write_Settings   0  1  0  0 

Change_Network_State  0  1  0  1 

Receive_MMS   0  1  0  0 

Receive_Wap_Push   0  1  0  0 
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Read_SMS    0  1  0  1 

Send_SMS    0  1  0  1 

Receive_SMS    0  1  0  1 

ATA = 
















969
6178
9815

 

By ATA – λI = 0 

















969
6178
9815

 - 
















λ
λ

λ

00
00
00

 = 0 

















−
−

−

λ
λ

λ

969
6178
9815

 = 0 

(-1)1+1(15-λ)�17 − 𝜆 6
6 9 − 𝜆�+(-1)1+2(8)�8 6

9 9 − 𝜆�+(-1)1+3(9)�8 17 − 𝜆
9 6 �=0 

(15-λ) ( )( )[ ]36917 −−− λλ -8 ( )[ ]5498 −− λ +9 ( )[ ]λ−− 17948 =0 

(15-λ)[153 − 17λ − 9λ + λ2 − 36]-8[72 − 8𝜆 − 54]+9[48 − 153 + 9𝜆]=0 

(15-λ)(λ2 − 26λ + 117)-8(18 − 8 𝜆) +9(9 𝜆 − 105)=0 

−λ3 + 41λ2 − 362λ + 666 = 0 

‘λ1=29.4907 

‘λ2=9 

‘λ3=2.5093 

S1=�λ1=5.4305 

S2=�λ2=3 

S3=�λ3=1.5841 
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S=
















5841.100
030
004305.5

 

 

S-1=
















6313.000
03333.00
001842.0

 

By (𝐴𝑇𝐴 −  𝜆𝐼) 𝑣⃑=0�⃑  

Let λ1=29.4907 

















969
6178
9815

-
















4307.2900
04307.290
004307.29

𝑣⃑=0�⃑  

















−
−

−

4907.2069
64907.128
984907.14

















x
x
x

3

2

1

=
















0
0
0

 

-14.4907x1+8x2+9x3 = 0  ……... Eq:1 

8x1-12.4907x2+6x3 = 0  ……... Eq:2 

9x1+6x2-20.4907x3 = 0  ……... Eq:3 

By Eq:1/9-Eq:2/6, 

-1.6101x1 +0.8889x2 +x3 = 0  

1.3333x1 -2.0818x2 +x3 = 0  

‘+  ‘+  ‘- 

--------------------------------------------------------------- 

-2.9434x1 +2.9707x2  = 0 …….. Eq:4 
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By Eq:2/8-Eq:3/9, 

x1 -1.5613x2 +0.75x3 = 0  

x1 +0.6667x2 -2.2767x3 = 0  

‘- ‘- ‘+ 

--------------------------------------------------------------- 

-2.228x2 +3.0267x3  = 0 …….. Eq:5 

By Eq:4/2.9707+Eq:5/2.228, 

0.9908x1 +x2   = 0  

-x2 +1.3585x3 = 0 

--------------------------------------------------------------- 

0.9908x1  +1.3585x3 = 0 

Let x1=1, 

1.3585x3 =-0.9908 

‘x3=-0.7293 

In Eq:4, 2.9707x2 =2.9434 

   x2 =0.9908 

‘v=
















− 7293.0
9908.0
1

 

Length, L = �(1)2 + (0.9908)2 + (−0.7293)2 =1.5854 

Normalized vector, v1= 
















− 46.0
625.0

6308.0
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Let λ2 = 9 

















069
688
986

















x
x
x

3

2

1

=
















0
0
0

 

6x1+8x2+9x3 = 0  ……... Eq:1 

8x1+8x2+6x3 = 0  ……... Eq:2 

9x1+6x2 = 0  ……... Eq:3 

By Eq:1-Eq:2, 

6x1 +8x2 +9x3 = 0 

8x1 +8x2 +6x3 = 0 

‘- ‘- ‘- 

---------------------------------------------------------------- 

-2x1  +3x2 = 0 ……... Eq:4 

Let  x1 =1, 

3x3 =2 

x3 =0.6667 

In Eq:3, 

6x2 =-9 

‘x2 =-1.5 

‘v=















−
6667.0

5.1
1

 

Length, L = �(1)2 + (−1.5)2 + (0.6667)2 =1.9221 

Normalized vector, v2= 















−

3469.0
7804.0

5203.0
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Let λ3=2.5093, 

















4907.669
64907.148
984907.12

















x
x
x

3

2

1

=
















0
0
0

 

12.4907x1+8x2+9x3 =0  ……... Eq:1 

8x1+14.4907x2+6x3 =0  ……... Eq:2 

9x1+6x2+6.4907x3 =0  ……... Eq:3 

By Eq:1/9-Eq:2/6, 

1.3879x1 +0.8889x2 +x3 = 0  

1.3333x1 +2.4151x2 +x3 = 0  

‘-  ‘-  ‘- 

--------------------------------------------------------------- 

0.0546x1 -1.5262x2  = 0 …… Eq:4 

By Eq:2/8-Eq:3/9, 

x1 +1.8113x2 +0.75x3 = 0 

x1 +0.6667x2 +0.7212x3 = 0 

‘- ‘- ‘- 

---------------------------------------------------------------- 

1.1446x2 +0.0228x3 = 0 ……. Eq:5 

By Eq:4/1.5262+Eq:5/1.1446, 

0.0358x1 -x2   = 0 

  x2 +0.0252x3 = 0 

---------------------------------------------------------------- 

0.0358x1  +0.025x3 = 0 
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Let x1=1, 0.025x3 = -0.0358 

x3 =-1.4206 

In Eq:4, -1.5262x2 =-0.0546 

x2 =0.0358 

‘v=
















− 4206.1
0358.0
1

 

Length, L = �(1)2 + (0.0358)2 + (−1.4206)2 =1.7376 

Normalized vector, v3= 
















− 8176.0
0206.0
5755.0

 

V=
















−−
−

8176.03469.046.0
0206.07804.0625.0
5755.05203.06308.0

 

By U =AVS-1 

 =A
















−−
−

5162.01156.00847.0
013.02601.01151.0

3622.01734.01162.0
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 =



















































































−
−
−
−
−
−
−
−
−

−
−
−

−

−

−
−
−
−
−
−

013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
3633.01734.01162.0
1529.0289.00315.0
1529.0289.00315.0
1529.0289.00315.0

3633.01734.01162.0
3763.00867.02313.0
3633.01734.01162.0
1399.00289.01466.0

3633.01734.01162.0
3763.00867.02313.0
1399.00289.01466.0
1399.00289.01466.0
1399.00289.01466.0
1399.00289.01466.0
1399.00289.01466.0

 

Vk
T= 








−

−
3469.07804.05203.0

46.0625.06308.0
 

Sk
-1=�0.1842 0

0 0.3333� 

New App, 

App1(0.6308,0.5203) 

App2(0.625,-0.7804) 

App3(-0.46,0.3469) 
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New QueryApp, 

‘queryApp =qTUkSk
-1= [ ]2601.04573.1 − Sk

-1 

  = [ ]0867.02684.0 −  

By Jaccard Similarities,  

Sim(App1,queryApp) = 

 

   = 

 

= 0.1991 

Sim(App2,queryApp) = 

 

= 

 

= 0.9788 

Sim(App3,queryApp) = 

 

= 

 

= -0.2719 

 

 

 

 

 

 

.6308 * 0.2684 + 0.5203 * (-0.0867) 

(0.6308)2 + (0.5203)2 + (0.2684)2 + (-0.0867)2 – 0.1242 

0.12420

0.3979 + 0.2707 + 0.072 + 0.0075 – 0.1242 

0.625 * 0.2684 + (-0.7804) * (-0.0867) 

(0.625)2 + (-0.0784)2 + (0.2684)2 + (-0.0867)2 – 0.2355 

0.2355 

0.3906 + 0.006 + 0.072 + 0.0075 – 0.2355 

-0.46 * 0.2684 + 0.3469 * (-0.0867) 

(-0.46)2 + (0.3469)2 + (0.2684)2 + (-0.0867)2 + 0.1536 

-0.1536 

0.2116 + 0.1203 + 0.072 + 0.0075 + 0.1536 
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     App1  App2  App3 testApp 

Access_Network_State  1  1  1  1 

Access_Wifi_State   1  1  1  0 

Internet    1  1  1  1 

Read_Phone_State   1  1  1  0 

Write_External_Storage  1  1  1  1 

Mount_Unmount_Filesystems 1  1  0  0 

Read_External_Storage  1  0  0  1 

Install_Shortcut   1  1  1  0 

Uninstall_Shortcut   1  0  0  0 

Read_Settings    1  1  0  0 

Receive_Boot_Completed  1  0  0  0 

Get_Tasks    1  0  1  0 

System_Alert_Window  1  0  1  0 

Wake_Lock    1  0  1  1 

Get_Accounts    1  0  0  0 

Raised_Thread_Priority  0  1  0  0 

Write_Secure_Settings  0  1  0  0 

Write_Settings   0  1  0  0 

Change_Network_State  0  1  0  0 

Receive_MMS   0  1  0  0 

Receive_Wap_Push   0  1  0  0 

Read_SMS    0  1  0  0 

Send_SMS    0  1  0  0 

Receive_SMS    0  1  0  0 
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ATA = 
















969
6178
9815

 

By ATA – λI = 0 

















969
6178
9815

 - 
















λ
λ

λ

00
00
00

 = 0 

















−
−

−

λ
λ

λ

969
6178
9815

 = 0 

(-1)1+1(15-λ)�17 − 𝜆 6
6 9 − 𝜆�+(-1)1+2(8)�8 6

9 9 − 𝜆�+(-1)1+3(9)�8 17 − 𝜆
9 6 �=0 

(15-λ) ( )( )[ ]36917 −−− λλ -8 ( )[ ]5498 −− λ +9 ( )[ ]λ−− 17948 =0 

(15-λ)[153 − 17λ − 9λ + λ2 − 36]-8[72 − 8𝜆 − 54]+9[48 − 153 + 9𝜆]=0 

(15-λ)(λ2 − 26λ + 117) -8(18 − 8 𝜆) +9(9 𝜆 − 105)=0 

−λ3 + 41λ2 − 362λ + 666 = 0 

‘λ1=29.4907 

‘λ2=9 

‘λ3=2.5093 

S1=�λ1=5.4305 

S2=�λ2=3 

S3=�λ3=1.5841 

S=
















5841.100
030
004305.5

 

 

62 
 



S-1=
















6313.000
03333.00
001842.0

 

By (𝐴𝑇𝐴 −  𝜆𝐼) 𝑣⃑=0�⃑  

Let λ1=29.4907 

















969
6178
9815

-
















4307.2900
04307.290
004307.29

𝑣⃑=0�⃑  

















−
−

−

4907.2069
64907.128
984907.14

















x
x
x

3

2

1

=
















0
0
0

 

-14.4907x1+8x2+9x3 = 0 ……... Eq:1 

8x1-12.4907x2+6x3 = 0 ……... Eq:2 

9x1+6x2-20.4907x3 = 0 ……... Eq:3 

By Eq:1/9-Eq:2/6, 

-1.6101x1 +0.8889x2 +x3 = 0  

1.3333x1 -2.0818x2 +x3 = 0  

‘+  ‘+  ‘- 

--------------------------------------------------------------- 

-2.9434x1 +2.9707x2  = 0 …….. Eq:4 

By Eq:2/8-Eq:3/9, 

x1 -1.5613x2 +0.75x3 = 0  

x1 +0.6667x2 -2.2767x3 = 0  

‘- ‘- ‘+ 

--------------------------------------------------------------- 

-2.228x2 +3.0267x3  = 0 …….. Eq:5 
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By Eq:4/2.9707+Eq:5/2.228, 

0.9908x1 +x2   = 0  

-x2 +1.3585x3 = 0 

--------------------------------------------------------------- 

0.9908x1  +1.3585x3 = 0 

Let x1=1, 

1.3585x3 =-0.9908 

‘x3 =-0.7293 

In Eq:4, 2.9707x2 =2.9434 

   x2 =0.9908 

‘v=
















− 7293.0
9908.0
1

 

Length, L = �(1)2 + (0.9908)2 + (−0.7293)2 =1.5854 

Normalized vector, v1= 
















− 46.0
625.0

6308.0
 

Let λ2 = 9 

















069
688
986

















x
x
x

3

2

1

=
















0
0
0

 

6x1+8x2+9x3 =0  ……... Eq:1 

8x1+8x2+6x3 =0  ……... Eq:2 

9x1+6x2 =0  ……... Eq:3 
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By Eq:1-Eq:2, 

6x1 +8x2 +9x3 = 0 

8x1 +8x2 +6x3 = 0 

‘- ‘- ‘- 

---------------------------------------------------------------- 

-2x1  +3x2 = 0 ……... Eq:4 

Let x1=1, 

3x3 =2 

x3=0.6667 

In Eq:3, 

6x2=-9 

‘x2=-1.5 

‘v=















−
6667.0

5.1
1

 

Length, L = �(1)2 + (−1.5)2 + (0.6667)2 =1.9221 

Normalized vector, v2= 















−

3469.0
7804.0

5203.0
 

Let λ3=2.5093, 

















4907.669
64907.148
984907.12

















x
x
x

3

2

1

=
















0
0
0

 

12.4907x1+8x2+9x3 =0  ……... Eq:1 

8x1+14.4907x2+6x3 =0  ……... Eq:2 

9x1+6x2+6.4907x3   =0  ……... Eq:3 
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By Eq:1/9-Eq:2/6, 

1.3879x1 +0.8889x2 +x3 = 0  

1.3333x1 +2.4151x2 +x3 = 0  

‘-  ‘-  ‘- 

--------------------------------------------------------------- 

0.0546x1 -1.5262x2  = 0 …… Eq:4 

By Eq:2/8-Eq:3/9, 

x1 +1.8113x2 +0.75x3 = 0 

x1 +0.6667x2 +0.7212x3 = 0 

‘- ‘- ‘- 

---------------------------------------------------------------- 

1.1446x2 +0.0228x3 = 0 ……. Eq:5 

By Eq:4/1.5262+Eq:5/1.1446, 

0.0358x1 -x2   = 0 

  x2 +0.0252x3 = 0 

---------------------------------------------------------------- 

0.0358x1  +0.025x3 = 0 

Let x1=1, 0.025x3 = -0.0358 

x3 =-1.4206 

In Eq:4, -1.5262x2 =-0.0546 

x2 =0.0358 

‘v=
















− 4206.1
0358.0
1

 

Length, L = �(1)2 + (0.0358)2 + (−1.4206)2 =1.7376 
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Normalized vector, v3= 
















− 8176.0
0206.0
5755.0

 

V=
















−−
−

8176.03469.046.0
0206.07804.0625.0
5755.05203.06308.0

 

By U =AVS-1 

 =A
















−−
−

5162.01156.00847.0
013.02601.01151.0

3622.01734.01162.0
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 =


































































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013.02601.01151.0
013.02601.01151.0
013.02601.01151.0
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013.02601.01151.0
013.02601.01151.0
3633.01734.01162.0
1529.0289.00315.0
1529.0289.00315.0
1529.0289.00315.0

3633.01734.01162.0
3763.00867.02313.0
3633.01734.01162.0
1399.00289.01466.0

3633.01734.01162.0
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Vk
T= 








−

−
3469.07804.05203.0

46.0625.06308.0
 

Sk
-1=�0.1842 0

0 0.3333� 

New App, 

App1(0.6308,0.5203) 

App2(0.625,-0.7804) 

App3(-0.46,0.3469) 
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New QueryApp, 

‘queryApp =qTUkSk
-1= [ ]7225.07037.0 Sk

-1 

  = [ ]2408.01296.0  

By Jaccard Similarities, 

Sim(App1,queryApp) = 

 

   = 

 

= 0.3862 

Sim(App2,queryApp) = 

 

= 

 

= -0.1849 

Sim(App3,queryApp) = 

 

= 

 

= 0.0624 

 

Similarity results for the testing of malware app and goodware app 

Applications testApp1(Malware) testApp2(Goodware) 
App1 0.1989 0.3862 
App2 0.9788 -0.1849 
App3 -0.2719 0.0624 
 

0.6308 * 0.1296 + 0.5203 * 0.2408 

(0.6308)2 + (0.5203)2 + (0.1296)2 + (0.2408)2 – 0.1242 

0.2071 

0.3979 + 0.2707 + 0.0168 + 0.058 – 0.2071 

0.625 * 0.1296 + (-0.7804) * 0.2408 

(0.625)2 + (-0.0784)2 + (0.1296)2 + (0.2408)2 + 0.1069 

-0.1069 

0.3906 + 0.006 + 0.0168 + 0.058 + 0.1069 

-0.46 * 0.1296 + 0.3469 * 0.2408 

(-0.46)2 + (0.3469)2 + (0.1296)2 + (0.2408)2 – 0.0239 

0.0239 

0.2116 + 0.1203 + 0.0168 + 0.058 – 0.0239 
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